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Summary

The Geometry of QRM Codes

Physical and Logical Operators

“Validity” Theorem

Subcube Operators

“Logic” Theorem

• Quantum Reed–Muller (QRM) codes are a family of CSS codes con-
structed from the classical Reed–Muller family.

• We give a geometric definition of QRM codes using the structure of 
an m-dimensional hypercube.

• By studying natural “subcube” transversal operators on these codes, 
we give:

(1) Necessary and sufficient conditions for when these operators pre-
serve the codespace.

(2) A combinatorial desciption of the logical circuits they implement.

Let                     be the set of weight-1 bit strings of length     .

The     -dimensional hypercube is the Cayley graph                     and a 
subcube of dimension       is any coset of the form               for            . 

For integers                          , the QRM code                     has stabilizers 
generated by:

Like the stabilizers, a basis for the logical Pauli operators of 
is given by    /    operators acting on subcubes.

Defining the set                                                 , a basis is given by the 
operators:

Consider a standard subcube operators, i.e.,               for            . 

If               performs non-trivial logic then by the Validity Theorem, then

 

Definition. A set of logical qubits             is called a minimal cover for 
     if (1)                   and  (2)                    . 

The collection of minimal covers for     is denoted by          .

Logic Theorem. If              , then               implements:

where           is a            -qubit controlled-    gate applied to the logical 
qubits in    .

Notes:
(1) The result only holds if          ; we also characterize the           case.
(2) We describe the circuits for arbitrary subcube operators, as well.

Fix a QRM code                      with          .

For a given subcube operator                  , the nature of the logic imple-
mented by                   on                       is determined by     and       :

Validity Theorem.

Define

We consider         operators acting on subcubes,
e.g.,            ,                  .   

No logic Non-trivial Trivial

Ex: Logical circuit corresponding 
to the     operator applied to                               
the                    subcube of 
                   .

Notes:

(1) The circuit is composed of
          gates.

(2) Pick a           gate and take the 
union of the sets defining its 
qubits. The union will always be 
equal to                    . 

(3) Any logical qubit which has a     
    in its index set is unaffected.


