Geometric structure and transversal logic of quantum Reed–Muller codes

Alexander Barg^{1,2}, Nolan J. Coble^{1,3}, Dominik Hangleiter^{1,4}, Christopher Kang⁵

¹Joint Center for Quantum Information and Computer Science, UMD & NIST, ²Institute for Systems Research, Dept. of ECE, UMD, ³Dept. of CS, UMD, ⁴Simons Institute for the Theory of Computing, UC Berkeley, ⁵Dept. of CS, University of Chicago

Summary

• Quantum Reed–Muller (QRM) codes are a family of CSS codes constructed from the classical Reed–Muller family.

• We give a geometric definition of QRM codes using the structure of an m-dimensional hypercube.

• By studying natural "subcube" transversal operators on these codes, we give:

Subcube Operators

Define $Z(k) \equiv |0\rangle\langle 0| + e^{i\frac{\pi}{2^k}}|1\rangle\langle 1|$

We consider Z(k) operators acting on subcubes, e.g., $S_{\langle 2,3,4\rangle}$, $X_{1111+\langle 3,4\rangle}$.

Validity" Theorem

(1) Necessary and sufficient conditions for when these operators preserve the codespace.

(2) A combinatorial desciption of the logical circuits they implement.

The Geometry of QRM Codes

Let $S = \{e_i\}_{i=1}^m$ be the set of weight-1 bit strings of length m.

The *m*-dimensional hypercube is the Cayley graph $Cay(\mathbb{Z}_2^m, S)$ and a subcube of dimension |K| is any coset of the form $x + \langle K \rangle$ for $K \subseteq S$.

For integers $-1 \le q \le r \le m$, the QRM code $QRM_m(q,r)$ has stabilizers generated by:

> $S_Z \equiv \{ Z_{x+\langle K \rangle} \mid K \subseteq S, \ |K| = r + 1 \},\$ $S_X \equiv \{X_{x+\langle K \rangle} \mid K \subseteq S, \ |K| = m - q\}.$

Fix a QRM code $QRM_m(q, r)$ with q < r.

For a given subcube operator $Z(k)_{x+\langle K\rangle}$, the nature of the logic implemented by $Z(k)_{x+\langle K\rangle}$ on $QRM_m(q,r)$ is determined by k and |K|:

No logic Non-trivial Trive No logic Non-trivial Trive Non-trive Non-trivial Trive Non-trive Non-trivial Trive Non-trive Non-trivial Trive Non-trive N

Trivial q + kr(k+1)r

q = 1r = 2

Logic Theorem

Physical and Logical Operators

Like the stabilizers, a basis for the logical Pauli operators of $QRM_m(q,r)$ is given by Z/X operators acting on subcubes.

Defining the set $Q \equiv \{J \subseteq S \mid q+1 \leq |J| \leq r\}$, a basis is given by the operators:

$$L_{Z} \equiv \{ \overline{Z}_{J} = Z_{\langle J \rangle} \quad | J \in \mathcal{Q} \},$$
$$L_{X} \equiv \{ \overline{X}_{J} = X_{1^{m} + \langle J \rangle} \mid J \in \mathcal{Q} \}.$$

Consider a standard subcube operators, i.e., $Z(k)_{\langle K \rangle}$ for $K \subseteq S$.

If $Z(k)_{\langle K \rangle}$ performs non-trivial logic then by the Validity Theorem, then $K \in \mathcal{Q}_k \equiv \{K' \subseteq \mathcal{Q} \mid q + kr + 1 \leq |K'| \leq (k+1)r\}.$

Definition. A set of logical qubits $\mathcal{J} \subseteq \mathcal{Q}$ is called a *minimal cover* for *K* if (1) $\bigcup J = K$ and (2) $|\mathcal{J}| = k + 1$. $J \in \mathcal{J}$ The collection of minimal covers for K is denoted by $\mathcal{F}(K)$.

Logic Theorem. If $K \in Q_k$, then $Z(k)_{\langle K \rangle}$ implements:

$$Z(k)_{\langle K \rangle} \equiv \prod_{\mathcal{J} \in \mathcal{F}(K)} \overline{C^{\mathcal{J}} Z},$$

where $C^{\mathcal{J}}Z$ is a (k+1)-qubit controlled-Z gate applied to the logical qubits in \mathcal{J} .

Notes:

(1) The result only holds if $q \ge 1$; we also characterize the q = 0 case. (2) We describe the circuits for arbitrary subcube operators, as well.

Ex: Logical circuit corresponding to the T operator applied to the $\langle 1, 2, 3, 4, 5 \rangle$ subcube of $QRM_{6}(0,2).$

Notes:

(1) The circuit is composed of \overline{CCZ} gates.

(2) Pick a \overline{CCZ} gate and take the union of the sets defining its qubits. The union will always be equal to $\{1, 2, 3, 4, 5\}$.

(3) Any logical qubit which has a 6 in its index set is unaffected.

