
REU program sponsored by the
National Science Foundation
Award Number: PHY1756179

Parallel Machine Learning Prediction of
Network Dynamics

Joy Hamlin (SUNY Stony Brook), Nolan J. Coble (SUNY Brockport),
Keshav Srinivasan (UMD), Michelle Girvan (UMD), Ed Ott (UMD), Tom Antonsen (UMD)

Summary
• Machine learning prediction of a network of dynamic systems is a task with
 many potential applications
• Using a single machine learning device becomes increasingly difficult as the
 system size increases
• We devised and tested a prediction scheme that uses many machine learning
 devices acting in parallel
• This prediction method scales naturally to arbitrarily large systems
• Proof of principle tests were done on the Kuramoto oscillator model

Background: Reservoir Computing Prediction
• Machine learning technique that uses a neural network known as a
 “reservoir” to predict the evolution of a dynamical system
 • Neural network: sparsely connected nodes that evolve over time, similar to
 neural activity
• Reservoir has no knowledge of system dynamics; it adapts to known training
 data for the system
•Method:
 1) Listening: input system states u(t) and obtain output state estimates ũ(t+∆t)
 2) Training: adjust output layer such that ũ(t+∆t) closely approximates u(t+∆t)
 3) Prediction: use ũ(t+∆t) from output as the next input to reservoir
• Reservoir must be large enough to predict a system, but for large
 interconnected systems this size requirement can be computationally
 infeasible ReservoirInput Layer Ouput Layer

Train

Predict

u(t) u(t + ∆t)~

Figure 1. Diagram of a reservoir computer. The method begins with the switch in the “Train” position. An
input layer couples the system state to the reservoir nodes, and an output layer retrieves an evolved state
from the reservoir. Once the reservoir has processed the training data, the output layer is adjusted so that
the output states closely approximate the true states for the system. The switch is then moved to the
“Predict” position. Now, the most recent reservoir state is fed back into the reservoir, and a new output
state is obtained. This process continues, allowing the prediction to evolve without any data of the true
system state.

Test System: Kuramoto Model
• System of N oscillators described by their phase angles, θi

• ωi: natural frequencies chosen from a uniform distribution from -π/2 to π/2
• K: strength of coupling
• D: constant number of neighbors per oscillator
• A: connectitvy matrix with frequency assortativity (oscillators with similar ωi
 are preferentially connected)
• Our test system uses N = 50, natural scales because of our parallel structure
• For the reservoir, vectors ui(t) are described by [sin(θi),cos(θi)]

Method: Parallel Prediction
• Assign a small reservoir to each node, i, of a network-coupled system
• Train each reservoir with known data from its assigned node and that node’s
 neighbors
• Predict the assigned node to obtain output vector ũi(t+∆t) and send this
 output to each neighboring reservoir to use for the next prediction step
• A similar parallel prediction scheme has been shown to work for
 spatiotemporally dynamic systems [J.Pathak, et al., Phys. Rev. Lett. (2018)]

Figure 2. (a) Example of a network with dynamical nodes. (b) Portion of the network. (c) Training Phase: a
single, small reservoir is assigned to each node of the system. Each reservoir receives an input state ui(t)
from its assigned node and the nodes that neighbor it. Output states ũi(t+∆t) are obtained from each
reservoir, and each output layer is individually adjusted so that every ũi(t+∆t) is approximately ui(t+∆t). (d)
Prediction phase: the output states ũi(t+∆t) are fed back into the assigned and neighboring reservoirs. The
predictions then evolve without any knowledge of the true dynamical state of each node. In panels (c) and
(d) only the connections between R1, R2, and R3 are shown. Other inputs are omitted for simplicity.

1

2

3

ũ1(t+∆t) ũ1(t+∆t)

ũ2(t+∆t) ũ2(t+∆t)

ũ3(t+∆t) ũ3(t+∆t)

...
...

R1

R2

R3

...
...

R1

R3

R2

(a) Network-Coupled Dynamical Nodes (b) Close-up of Three Nodes
(c) Individual Reservoirs
Trained on Nodes and

Neighbors

(d) Parallel Reservoir
Prediction Scheme

Method: Parallel PredictionMethod: Parallel PredictionMethod: Parallel PredictionMethod: Parallel PredictionMethod: Parallel Prediction

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

|G
lo

ba
l O

rd
er

 P
ar

am
et

er
|

time (s)

Results

0 20 40 60 80 100 120 140 160 180 200
time (s)

-1

-0.5

0

0.5

1

sin
()

Figure 3. True evolution of sin(θ) for an oscillator in the network [K = 1.5] in blue compared to parallel
prediction result for the same oscillator in red. The vertical black line marks the valid time of the prediction
when the error reaches the threshold set (0.4). Even after the valid time, the prediction evolves similarly to
the true state.

Figure 4. The global order parameter for the Kuramoto model is a measure of synchronization within the
system, and it is calculated from the angles of each oscillator at a given time. A magnitude of 1 describes a
completely synchonized system whereas a magnitude of 0 describes a desynchronized state. The figure
above shows the true magnitude of the global order parameter over in blue compared to the results from
the parallel prediction in red.

Max
mean
error

0
mean
error

Figure 5. Representation of parallel prediction
performance for our 50 node system. Upward
pointing triangles represent positive natural
frequencies and downward pointing triangles
represent negative natural frequencies. The
area of each triangle is proportional to the
magnitude of the natural frequency. Color
represents the mean error across the prediction
length of 200 seconds.

Conclusion
• For networks of interest in applications the number of nodes can be very
 large, e.g., ~106 for some social networks.
• Prediction of global and individual nodal state dynamics is often of great
 use in such situations.
• We have presented a machine learning scheme which, through parallelization,
 makes it feasible to accomplish such tasks.

