
A Reservoir Computing Scheme for Multi-class Classification
Nolan J. Coble and Ning Yu

State University of New York The College at Brockport
Brockport, New York, USA
{ncobl1,nyu}@brockport.edu

ABSTRACT
A recent addition to the field of neural networks is a framework
for recurrent neural networks (RNNs) called reservoir computing.
Reservoir computing has proven successful in predicting dynamical
systems, but little attention has been given to its possible use as a
classification method. Literature has been written specifically in
regard to reservoir computing for binary classification, but few
papers have specifically been written about multi-class classifica-
tion. This article aims to provide a generic scheme for multi-class
classification based on reservoir computing. The comparable per-
formance has shown that our proposed scheme as an alternative
classifier can catch up with and even outstrip the performance of
some traditional classifiers such as naïve Bayesian, decision trees,
random forest, and neural network over several data sets.

CCS CONCEPTS
•ComputingMethodologies→ Expert Systems; •AppliedCom-
puting → Computers in other systems.

KEYWORDS
Reservoir Computing, Multi-class Classification, Recurrent Neural
Network, Deep Neural Network

ACM Reference Format:
Nolan J. Coble and Ning Yu. 2020. A Reservoir Computing Scheme for
Multi-class Classification. In 2020 ACM Southeast Conference (ACMSE 2020),
April 2–4, 2020, Tampa, FL, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3374135.3385265

1 INTRODUCTION
Since the Recurrent Neural Network (RNN) model was discovered
and used for pattern recognition in 1980s, it has attested as an effec-
tive approach for various applications. In the last decade, reservoir
computing, a special type of RNN, has gained much attention for
its simple training process and the computing capability to handle
temporal data [16].

The reservoir computing (RC) framework is also referred to as
a reservoir computer. It usually consists of three layers: an input
layer, reservoir layer, and output layer as depicted in Figure 1. The
reservoir layer in particular houses an RNN, albeit in a different

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACMSE 2020, April 2–4, 2020, Tampa, FL, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7105-6/20/03. . . $15.00
https://doi.org/10.1145/3374135.3385265

Figure 1: Illustration of Reservoir Computing

manner than traditional RNN usages. Simply put, a traditional RNN
approach involves inputting a training vector, readjusting all input,
perceptron, and output weights, then repeating the process until
all training data has been processed. Reservoir computing greatly
reduces the time complexity of a traditional RNN by randomizing
the input and perceptron weights, while only training the output
weights [9].

The Reservoir Computing framework has been known for over a
decade as a state-of-the-art paradigm for the design of RNN. Among
the models of RC instances, the echo state network (ESN) represents
a type of the most widely known schemes with a strong theoretical
support and many successful applications [5]. Jaeger and Haas first
invented echo state networks (ESN) in 2004 for time series predic-
tion in wireless communication channels [7]. ESN were designed
to face with the challenges of RNNs by reducing the training time
of artificial neural networks and avoiding the vanishing gradient
problem [5]. The hidden layers were initialized randomly and consti-
tuted the reservoir, in which each neuron created its own nonlinear
activation of the incoming signal, the inter-connected weights and
the input weights were not learned through gradient descent, and
only the output weights were tuned by using a learning algorithm
such as logistic or Ridge classifier [6].

Fawaz et al. presented an empirical study of the most recent
DNN architectures for Time Series Classification (TSC) and gave
an overview of the most successful deep learning applications in
various time series domains including the RC under a unified tax-
onomy of DNNs for TSC [3]. V. Krylov and S. Krylov applied a
RC framework to binary classification [9]. Notably, they made the
decision to represent two distinct classes with the vectors (1, 0)
and (0, 1). Though this should have improved prediction result over
using a labeling scheme of 0 and 1, their results were less than
fruitful. However, it has shown that RC is a potentially promising
candidate for generic classification. Schaetii et al. investigated RC
when applied toMNIST digit recognition [14]. Although not generic
classification, their method verifies the ability of RC to classify with

ACM Southeast Conference – ACMSE 2020 – Session 1: Full Papers – ISBN: 978-1-4503-7105-6
Tampa, FL, USA, April 2-4, 2020

87

a high success rate. This temporalization method along with the
RC framework is applied to the MNIST handwritten digit dataset.
Chouikhi et al. studied the application of a reservoir computer as
an autoencoder for aiding in time-series classification problems
[2]. Their autoencoder method followed exactly as in typical RC
frameworks, but the objective of their work was not to train an
output layer to achieve prediction capabilities. Rather, their goal
was to collect reservoir states and pass those states into a classi-
fier. In terms of RC terminology, they generated reservoir states
for each step of time-series data and used these reservoir states to
represent the time-series data. Due to the attributes of the nonlin-
earity and the echo-state property of the reservoir layer, their RC
autoencoder was able to capture and represent hidden features of
data. To extract even more hidden features, they also implemented
a multi-layer reservoir system. In this framework there were multi-
ple reservoirs connected together. The output from one reservoir
was directly input to another reservoir, and so forth for as many
layers as desired. Results for their autoencoder were promising
when compared to an extreme learning machine (ELM) autoen-
coder. Ma et al. introduced a deep echo state network method to
improve reservoir computing’s ability to capture multi-scale dy-
namics of time-series data [12]. Multi-layer RC frameworks have
been studied before, but these systems simply apply multiple reser-
voirs in a row to nonlinearly transform time series data. Multiple
reservoirs were used in a row, but the output from one reservoir
was passed through an autoencoder before entering the next reser-
voir. The additional nonlinear transformation allowed this RC to
capture dynamics on multiple timescales, an important require-
ment for reservoir computing to become realistically useful. Their
system greatly improved time-series prediction over a single ESN
framework and a general multi-layer ESN framework. In a study of
Mackey-Glass system predictions (a common chaotic system used
in prediction experiments), their system improved predictions by
an order of magnitude in this particular instance while in other
instances, they found only modest improvement. Nonetheless, their
method provides an interesting combination of the simplicity of
training and predicting for reservoir computers and the multi-scale
capabilities of traditional deep-learning methods.

In addition to these RC applications in RNN, Tanaka et al. impor-
tantly introduced the various physical implementations of reser-
voir computing [15]. Any high dimensional and nonlinear system
with short-term memory could serve as a physical implementa-
tion for reservoir computing [13]. Many types of physical reservoir
computers were being studied, including coupled-oscillators and
neuromemristive circuits.

Despite the numerous research works devoted to reservoir com-
puting, few have focused on applications of reservoir computing to
classification problems. Even among those works, the problem of
generic multi-class classification has not been handled to date. In
this article, we try to fit the niche and propose a generic multi-class
classifier. In the following sections, Section 2 describes the methods
used in this article. Section 3 illustrates the performance of the
proposed generic scheme comparing with other common classifiers.
At last, Section 4 makes a discussion and concludes this article.

(A)

(B)

(C)

Figure 2: True Classes and Classifier Predictions for (A)
Dtree Data Set, (B) Multivar Data Set, and (C) Rforest Data
Set

2 METHODS
The training input for classification is a matrix of (# of training
vectors) × (# of properties). There are many ways to represent the
class that a vector may belong to. Common in other classification
methods is assigning classes as 0, 1, 2, etc., but this labeling scheme
proves to be ineffective for reservoir computing. A labeling scheme
of (1, 0) and (0, 1) was used to represent two distinct classes in [9].
This method allowed the reservoir computer to better differentiate
between classes. In this article we proposed an extension of the RC
method as: n different classes correspond to orthogonal unit vectors
of length n. Namely, we will use the rows of In the identity matrix

A Reservoir Computing Scheme for Multi-class Classification
N. Coble, N. Yu

88

Table 1: Average RC Prediction Performance

Data Set Mean precision Mean recall Mean F1-score
Dtree 0.965 0.970 0.970

Multivar 1.000 1.000 1.000
Rforest 0.870 0.870 0.870

Pulsar-star 0.965 0.900 0.930
Banknote 0.985 0.980 0.980

Iris 0.977 0.973 0.977
Shuttle 0.764 0.676 0.687
Seeds 0.927 0.930 0.927

precision = T P
T P+F P , recall =

T P
T P+FN , F1 = 2 × precision×r ecall

precision+r ecall

of dimension n to represent the different classes. At this point, we
have a matrix of input solutions and each training input has an
associate class vector. The i-th input vector will be referenced as
®u(i).

The input layer consists of the input weights to each reser-
voir perceptron. It is a randomly generated matrix of size (# of
properties) × (# of perceptrons), with values uniformly distributed
between 0 and δ , where δ is a scaling factor. This scaling factor
allows us to adjust the reservoir computing method to training data
of various sizes. The input layer matrix is denoted asWin .

The reservoir layer is where the actual RNN is held. The reservoir
can contain any number of perceptrons, though typical applications
use a value between 500 to 1000. For classification applications, it
appears as though smaller values (around 50-200) work best. The
current, i-th, state of the reservoir is described as a length (# of
perceptrons) vector, referenced as ®r (i). The perceptron weights are
described by a connectivity/adjacency matrix, A. This matrix is
an Erdös-Rényi randomly generated matrix. The eigenvalues of
the matrix are normalized, and scaled by a factor, ρ, known as the
spectral radius. The spectral radius of the connectivity matrix de-
termines how the reservoir adapts to changing dynamics. Usually,
a spectral radius of around 0.9 is used in dynamics-prediction appli-
cations, although finding an optimal spectral radius has not been
directly studied. The activation function for the reservoir is given
in Equation 1.

®r (i) = tanh[®r (i − 1) ×A + ®u(i) ×W in], (1)

where ®r (i − 1) ×A represents the reservoir feedback and is what al-
lows the reservoir to adapt to new input vectors. The ®u(i)×Win term
represents the input to the reservoir. The input term and activation
function used varies greatly between different implementations of
reservoir computing. A similar linear mapping with input weights
was given in the literature [9] and the activation function used was
the hyperbolic tangent.

The output layer is how a prediction is obtained from the reser-
voir. The output layer is a (# of perceptrons) ×(# of classes) matrix,
referred to asWout . The output is obtained by Equation 2.

output = ®r (i) ×W out (2)

The process of reservoir computing involves three stages: (1)
listening, (2) training, and (3) predicting.

Table 2: Comparison for Dtree Data Set

Class 0
Method Precision Recall F1-score
Bayesian 1.00 0.97 0.99
Reservoir 0.93 1.00 0.97
Decision Tree 0.87 0.87 0.87
Random Forest 0.97 0.90 0.93
Neural Network 0.90 1.00 0.95

Class 1
Method Precision Recall F1-score
Bayesian 0.97 1.00 0.99
Reservoir 1.00 0.94 0.97
Decision Tree 1.00 0.94 0.97
Random Forest 1.00 0.94 0.97
Neural Network 1.00 0.89 0.94

In the listening phase, training data is input to the reservoir one
by one to generate associated reservoir states. Given one piece of
training data, ®u(i), we generate an associated reservoir state, ®r (i),
via the activation function given in Equation 1. Note that a new
reservoir state depends on the current input data, as well as the
previous reservoir state. This feedback term is what allows the
reservoir states to capture the dynamics, or properties, of the input
data stream. After all of the training data has been input to the
reservoir, we are left with a few things: a matrix of input data ®u,
a matrix of associated classes ®c , a matrix of reservoir states ®r , and
the final state of the reservoir, ®r (end). At this point, the matrix of
input data serves no purpose, but helpful to recall its presence. It
should also be noted that ®r (end) is certainly contained within the
reservoir state matrix (it is the last row of this matrix), but we will
find that this vector itself is important during the predicting phase.

The training phase is the result of a few simple logical arguments.
We have a matrix of reservoir states that supposedly capture the
dynamics of our input data, and we have a matrix of class vectors
that are associatedwith the input data.Wewould expect the relation
between the class vectors and the reservoir states as the following
Equation 3.

®r ×Wout = ®c (3)
If our reservoir has, in fact, captured the properties of the training

data, then when we retrieve information from the reservoir, we
would expect to get our matrix of class vectors. We do not know
the output matrix, but we know the reservoir states and the class
matrix. We can find the output matrix via Equation 4. By using the
Moore-Penrose pseudoinverse, we are effectively minimizing the
error in producing the class matrix from our reservoir states.

Wout = pseudoinverse(®r) × ®c (4)

The predicting phase is relatively straightforward. Given a new
input with unknown class, we generate a new reservoir state via
Equation 5. From this new reservoir state, we obtain the predicted
class via Equation 6.

®r (new) = tanh[®r (end) ×A + ®u(input) ×W in] (5)

ACM Southeast Conference – ACMSE 2020 – Session 1: Full Papers – ISBN: 978-1-4503-7105-6
Tampa, FL, USA, April 2-4, 2020

89

Table 3: Comparison for Multivar Data Set

Class 0
Method Precision Recall F1-score
Bayesian 1.00 1.00 1.00
Reservoir 1.00 1.00 1.00
Decision Tree 1.00 1.00 1.00
Random Forest 1.00 1.00 1.00
Neural Network 1.00 1.00 1.00

Class 1
Method Precision Recall F1-score
Bayesian 1.00 1.00 1.00
Reservoir 1.00 1.00 1.00
Decision Tree 0.96 1.00 0.98
Random Forest 1.00 1.00 1.00
Neural Network 1.00 1.00 1.00

Class 2
Method Precision Recall F1-score
Bayesian 1.00 1.00 1.00
Reservoir 1.00 1.00 1.00
Decision Tree 1.00 0.96 0.98
Random Forest 1.00 1.00 1.00
Neural Network 1.00 1.00 1.00

Class 3
Method Precision Recall F1-score
Bayesian 1.00 1.00 1.00
Reservoir 1.00 1.00 1.00
Decision Tree 1.00 1.00 1.00
Random Forest 1.00 1.00 1.00
Neural Network 1.00 1.00 1.00

predictedclass = ®r (new) ×W out (6)

It is important to note that we do not keep the new reservoir
state after a prediction has been made. This is starkly different
from predicting dynamical data using reservoir computing. We do
not want to update the last reservoir state during classification,
since we do not know whether or not the prediction that was
made is correct. If the prediction was correct, then the reservoir
performance would improve slightly, but even a single incorrect
prediction would drastically affect results [9]. For this reason, we
do not update the reservoir state after a prediction has been made.

3 RESULTS
All reservoir computing classification results are summarized in
Table 1. The reservoir computer classification scheme was tested on
eight data sets. Sample data was split so that 75% of data was used
for training, with the remaining 25% reserved for testing/validation.
An input scaling of 0.3 and a spectral radius of 0.9 were used. The
reservoir size was 50 perceptrons. Performance in Table 1 was

Table 4: Comparison for Rforest Data Set

Class 0
Method Precision Recall F1-score
Bayesian 0.97 0.87 0.91
Reservoir 0.91 0.86 0.88
Decision Tree 0.96 0.84 0.89
Random Forest 0.92 0.85 0.88
Neural Network 0.91 0.89 0.90

Class 1
Method Precision Recall F1-score
Bayesian 0.84 0.88 0.86
Reservoir 0.84 0.83 0.84
Decision Tree 0.83 0.86 0.85
Random Forest 0.86 0.84 0.85
Neural Network 0.84 0.83 0.83

Class 2
Method Precision Recall F1-score
Bayesian 0.84 0.91 0.87
Reservoir 0.86 0.92 0.89
Decision Tree 0.82 0.91 0.86
Random Forest 0.84 0.92 0.88
Neural Network 0.89 0.92 0.90

measured as the mean precision, recall, and F1-score across the
different classes of each data set.

The proposed RC scheme was validated against four other well
known classification methods: naïve Bayesian, decision tree, ran-
dom forest, and a neural network. The naïve Bayesian classifier
is a probabilistic model which is based on Bayes’ rule for proba-
bilities. Due to the probabilistic nature, the prediction results are
the same every time the classifier is trained and run. The decision
tree classifier is an entropy-based model. This model effectively
classifies all of the training data in a tree model. Test instances then
follow this tree model, to determine which class they belong to.
The random forest model uses an ensemble of decision trees. In
many applications, the random forest model can drastically increase
classification accuracy. The neural network model is a widely used
classification method. A 3-layer neural network model was used for
this classification test. Each layer consists of 50 perceptrons. The
hidden layer activation function was a rectified linear function, and
the output layer activation was softmax. The model was trained
over 2000 iterations. Each of the 5 classifiers were tested on the 8
data sets. Tables 2-9 summarize the results.

Dtree data consists of 360 instances, each with 2 attributes [8].
These instances are labeled in two equally sized classes. Comparison
of true classes and reservoir computer classifier results is given
in Figure 2 (A). The classifier predicted with strong performance,
missing only fringe data points. Table 2 shows the comparison of
the RC classifier against the other classifiers.

A Reservoir Computing Scheme for Multi-class Classification
N. Coble, N. Yu

90

Table 5: Comparison for Pulsar-star Data Set

Class 0
Method Precision Recall F1-score
Bayesian 0.98 0.96 0.97
Reservoir 0.98 1.00 0.99
Decision Tree 0.99 0.99 0.99
Random Forest 0.98 0.99 0.98
Neural Network 0.98 1.00 0.99

Class 1
Method Precision Recall F1-score
Bayesian 0.67 0.83 0.74
Reservoir 0.95 0.80 0.87
Decision Tree 0.93 0.85 0.89
Random Forest 0.94 0.82 0.87
Neural Network 0.98 0.76 0.85

Multivar data consists of 400 instances, each with two attributes
[8]. These instances are labeled in four equally sized classes, all lin-
early separable. Comparison of true classes and reservoir computer
classifier results is given in Figure 2 (B). The classifier predicted
without error. Table 3 shows the comparison of the RC classifier
against the other classifiers.

Rforest data consists of 900 instances, each with two attributes
[8]. These instances are labeled in three equally sized classes. All
three classes overlap with each other, reducing accuracy of all
classification methods. Comparison of true classes and reservoir
computer classifier results is given in Figure 2 (C). Table 4 shows
the comparison of the RC classifier against the other classifiers.

Pulsar-stars consists of 17898 instances, each with 8 attributes
[11]. These instances are labeled in two unequal classes. The 8 at-
tributes are statistics obtained from integrated pulse profiles and
DM-SNR curves for candidate pulsars. Each instance is labeled as
either yes, a pulsar star, or no, not a pulsar star. 16,259 instances
are not pulsar stars and 1,639 instances are. This represents ap-
proximately 9% positive occurrences, a relatively unbalanced set to
test binary classification. Table 5 shows the comparison of the RC
classifier against the other classifiers. All classifiers were able to
predict the larger class with high precision. The Bayesian classifier
had the worst performance on the smaller class, while the other
four classifiers performed on par with each other.

Banknote data consists of 1372 instances, each with 4 attributes
[10]. These instances are labeled in two classes; 762 instances belong
to class 0 and 610 instances belong to class 2. The 4 attributes are
statistics obtained from wavelet transformed images of both real
and fraudulent banknotes. Table 6 shows the comparison of the RC
classifier against the other classifiers. The neural network classifier
performed perfectly, with the RC classifier not far behind. The other
methods showed only slightly less precision.

Iris data consists of 150 instances, each with 4 attributes [4].
These instances are labeled in three equal classes representing
different iris species. The 4 attributes are various physical measure-
ments of the iris plant. Class 0 is linearly separable from the other
two, but class 1 and class 2 are not separable. Table 7 shows the

Table 6: Comparison for Banknote Data Set

Class 0
Method Precision Recall F1-score
Bayesian 0.89 0.88 0.89
Reservoir 0.97 1.00 0.98
Decision Tree 0.95 0.95 0.95
Random Forest 0.98 0.95 0.95
Neural Network 1.00 1.00 1.00

Class 1
Method Precision Recall F1-score
Bayesian 0.82 0.83 0.82
Reservoir 1.00 0.96 0.98
Decision Tree 0.94 0.94 0.94
Random Forest 0.94 0.97 0.96
Neural Network 1.00 1.00 1.00

Table 7: Comparison for Iris Data Set

Class 0
Method Precision Recall F1-score
Bayesian 1.00 1.00 1.00
Reservoir 1.00 1.00 1.00
Decision Tree 1.00 1.00 1.00
Random Forest 1.00 1.00 1.00
Neural Network 1.00 1.00 1.00

Class 1
Method Precision Recall F1-score
Bayesian 0.91 1.00 0.95
Reservoir 0.93 1.00 0.97
Decision Tree 0.92 0.86 0.89
Random Forest 0.87 0.93 0.90
Neural Network 0.93 0.93 0.93

Class 2
Method Precision Recall F1-score
Bayesian 1.00 0.90 0.95
Reservoir 1.00 0.92 0.96
Decision Tree 0.85 0.92 0.88
Random Forest 0.91 0.83 0.87
Neural Network 0.92 0.92 0.92

comparison of the RC classifier against the other classifiers. All
classifiers predicted Class 0 perfectly, but the RC classifier scored
higher than the other classifiers for both remaining classes.

Shuttle data consists of 43,500 instances, each with 9 attributes 1.
These instances are labeled in 7 unequal classes. The 9 attributes are
various numerical attributes. 34,108 (approximately 80%) instances
correspond to class 1, which should be themost accurately predicted

1https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)

ACM Southeast Conference – ACMSE 2020 – Session 1: Full Papers – ISBN: 978-1-4503-7105-6
Tampa, FL, USA, April 2-4, 2020

91

Table 8: Comparison for Shuttle Data Set

Class 0
Method Precision Recall F1-score
Bayesian 0.99 0.68 0.81
Reservoir 0.99 0.99 0.99
Decision Tree 1.00 1.00 1.00
Random Forest 1.00 1.00 1.00
Neural Network 0.99 1.00 0.99

Class 1
Method Precision Recall F1-score
Bayesian 1.00 0.69 0.82
Reservoir 0.97 1.00 0.98
Decision Tree 1.00 1.00 1.00
Random Forest 1.00 1.00 1.00
Neural Network 0.99 1.00 0.99

Class 2
Method Precision Recall F1-score
Bayesian 0.02 1.00 0.04
Reservoir 0.00 0.00 0.00
Decision Tree 0.50 0.14 0.22
Random Forest 1.00 0.14 0.25
Neural Network 1.00 0.43 0.60

Class 3
Method Precision Recall F1-score
Bayesian 0.21 0.59 0.30
Reservoir 0.81 0.35 0.49
Decision Tree 0.79 0.89 0.84
Random Forest 1.00 0.11 0.20
Neural Network 1.00 0.81 0.90

Class 4
Method Precision Recall F1-score
Bayesian 0.44 0.80 0.57
Reservoir 0.98 0.89 0.93
Decision Tree 1.00 1.00 1.00
Random Forest 1.00 1.00 1.00
Neural Network 1.00 0.97 0.99

Class 5
Method Precision Recall F1-score
Bayesian 0.40 1.00 0.57
Reservoir 1.00 0.50 0.67
Decision Tree 0.00 0.00 0.00
Random Forest 0.00 0.00 0.00
Neural Network 1.00 0.50 0.67

Class 6
Method Precision Recall F1-score
Bayesian 0.00 1.00 0.01
Reservoir 0.60 1.00 0.75
Decision Tree 0.00 0.00 0.00
Random Forest 0.00 0.00 0.00
Neural Network 0.60 1.00 0.75

Table 9: Comparison for Seeds Data Set

Class 0
Method Precision Recall F1-score
Bayesian 0.93 0.93 0.93
Reservoir 0.95 0.90 0.92
Decision Tree 0.85 0.85 0.85
Random Forest 0.76 0.95 0.84
Neural Network 0.90 0.90 0.90

Class 1
Method Precision Recall F1-score
Bayesian 1.00 1.00 1.00
Reservoir 0.94 1.00 0.97
Decision Tree 1.00 1.00 1.00
Random Forest 1.00 1.00 1.00
Neural Network 0.94 1.00 0.97

Class 2
Method Precision Recall F1-score
Bayesian 0.92 0.92 0.92
Reservoir 0.89 0.89 0.89
Decision Tree 0.83 0.83 0.83
Random Forest 0.92 0.67 0.77
Neural Network 0.94 0.89 0.91

class. 6,748 correspond to class 4, 2,458 to class 0, 132 to class 3, 37
to class 2, 11 to class 6, and 6 to class 5. Due to number of instances,
classes 2, 5, and 6 should be the most difficult for the classifiers to
predict accurately. Table 8 shows the comparison of the RC classifier
against the other classifiers. All of the models struggle with the
small classes, but the neural network clearly performs the best. The
reservoir computer is on par with the NN for most of the classes.

Seeds data consists of 210 instances, each with 7 attributes [1].
These instances are labeled in 3 equal classes. The 7 attributes rep-
resent geometric parameters of seeds of 3 different wheat varieties.
Table 9 shows the comparison of the RC classifier against the other
classifiers. All of the classifiers predicted relatively similar with
each other, with the Bayesian classifier appearing to perform the
most accurately.

The Python code of the RC scheme can be found in Github:
https://github.com/ncoble98/reservoir_computing_classifier.git.

4 CONCLUSION
The results and validation show that the RC scheme as an alternative
multi-class classifier can certainly compete with other classification
methods and even outperforms other traditional machine learning
methods over some data sets, without increase on computational
complexity. There are several things to keep in mind about the
prior results. The naïve Bayesian classifier—which is based on sta-
tistical arguments—and the decision tree classifier—which is based
on entropy arguments—perform consistently each time they are
run. The bases for their schemes is not random, and as a result
the classifications will always produce the same results (aside from

A Reservoir Computing Scheme for Multi-class Classification
N. Coble, N. Yu

92

the randomness of splitting the training data). This can be useful,
but it also limits those methods from improvement. The random
forest and reservoir computing methods can vary greatly with each
run. This is a result of the inherent randomness of both schemes (a
’random’ forest and a random reservoir).

Although reservoir computing may not have performed best in
each trial, there are many factors that could affect this performance.
As mentioned in previous sections, the input scaling factor and
spectral radius of the reservoir will drastically change the outcome
of results. We did not vary these values throughout the tests, mainly
due to the lack of literature on how to optimize parameters. Further
research could be done to optimize the input scaling and spectral
radius for classification, or even for dynamical predictions.

In addition to optimizing parameters, there is some literature
devoted to additions to the reservoir computing prediction scheme
for dynamic systems, that could theoretically be extended to the
classification use. A deep reservoir network scheme was described
in [12] whereby reservoir states subsequently passed through an
auto-encoder into another reservoir, and so forth. This method
could be adapted to classification to some extent.

REFERENCES
[1] M. Charytanowicz, J. Niewczas, P. Kulczycki, P. A. Kowalski, S. Łukasik, and S.

Żak. 2012. Seeds Dataset.
[2] N. Chouikhi, B. Ammar, and A. M. Alimi. 2018. Genesis of Basic and Multi-layer

Echo State Network Recurrent Autoencoders for Efficient Data Representations.
arXiv preprint arXiv:1804.08996 (2018).

[3] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. Muller. 2019. Deep
Learning for Time Series Classification: A Teview. Data Mining and Knowledge
Discovery 33, 4 (2019), 917–963.

[4] R. A. Fisher. 1988. UCI Machine Learning Repository. https://archive.ics.uci.
edu/ml/datasets/Iris

[5] C. Gallicchio and A. Micheli. 2017. Deep Echo State Network DeepESN: A Brief
Survey. arXiv preprint arXiv:1712.04323 (2017).

[6] A. E. Hoerl and R. W. Kennard. 1970. Ridge Regression: Applications to
Nonorthogonal Problems. Technometrics 12, 1 (1970), 69–82.

[7] H. Jaeger andH. Haas. 2004. Harnessing Nonlinearity: Predicting Chaotic Systems
and Saving Energy in Wireless Communication. science 304, 5667 (2004), 78–80.

[8] P. Joshi. 2017. Artificial Intelligence with Python. Packt Publishing Ltd.
[9] V. Krylov and S. Krylov. 2018. Reservoir Computing Echo State Network Classi-

fier Training. In Journal of Physics: Conference Series, Vol. 1117. IOP Publishing,
Moscow, Russian Federation, 012005.

[10] V. Lohweg. 2013. UCI Machine Learning Repository. https://archive.ics.uci.edu/
ml/datasets/banknote+authentication

[11] R. J. Lyon, B. W. Stappers, S. Cooper, J. M. Brooke, and J. D. Knowles.
2016. Fifty Years of Pulsar Candidate Selection: From Simple Filters to
a New Principled Real-time Classification Approach. Monthly Notices
of the Royal Astronomical Society 459, 1 (04 2016), 1104–1123. https://
doi.org/10.1093/mnras/stw656 arXiv:https://academic.oup.com/mnras/article-
pdf/459/1/1104/8115310/stw656.pdf

[12] Q.Ma, L. Shen, andG.W. Cottrell. 2017. Deep-esn: AMultiple Projection-encoding
Hierarchical Reservoir Computing Framework. arXiv preprint arXiv:1711.05255
(2017).

[13] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott. 2018. Model-free Prediction
of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing
Approach. Physical review letters 120, 2 (2018), 024102.

[14] N. Schaetti, M. Salomon, and R. Couturier. 2016. Echo State Networks-based
Reservoir Computing for MNIST Handwritten Digits Recognition. In 2016 IEEE
Intl Conference on Computational Science and Engineering (CSE) and IEEE Intl Con-
ference on Embedded and Ubiquitous Computing (EUC) and 15th Intl Symposium
on Distributed Computing and Applications for Business Engineering (DCABES).
IEEE, Paris, France, 484–491.

[15] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa, S. Takeda, H.
Numata, D. Nakano, and A. Hirose. 2019. Recent Advances in Physical Reservoir
Computing: A Review. Neural Networks (2019).

[16] A. Tong and G. Tanaka. 2018. Reservoir Computingwith Untrained Convolutional
Neural Networks for Image Recognition. In 2018 24th International Conference on
Pattern Recognition (ICPR). IEEE, Beijing, China, 1289–1294.

ACM Southeast Conference – ACMSE 2020 – Session 1: Full Papers – ISBN: 978-1-4503-7105-6
Tampa, FL, USA, April 2-4, 2020

93

