
Developing a Parallel Machine 
Learning Approach for Network 

Predictions
Nolan J. Coble

Research was performed as part of the TREND 2019 REU at the University of Maryland, College Park, 
under the direction of Dr. Michelle Girvan, Dr. Ed Ott, and Dr. Thomas Antonsen.



Things to pay attention to…

■ Don’t focus too much on the inner workings of the 
machine learning device; the important part is what 
data the device is being trained on and what data 
the device produces as predictions.

■ Don’t focus too much on the inner workings of the 
machine learning device! Neural networks are “black 
box” prediction techniques, no one really knows why 
they work so well.

■ Focus on what a network system is, and how we can 
use it to our advantage to develop a parallel 
prediction method.

2



Beginning with an example…

Predicting a 2-mass, 3-spring system



Predicting a 2-mass, 3-spring system

4



Predicting a 2-mass, 3-spring system

Problem: Given 14 
seconds of data for a 
2-mass, 3-spring 
system, determine 
how the system will 
continue to evolve in 
the future.

5



A physicist would typically solve this using theory. But 
we’re not physicists today, we’re computer scientists!

Solution: We will use machine learning!

6



Reservoir Computing

The machine learning technique 
we will be using.



What is Reservoir Computing?

• Relatively new framework for Recurrent 
Neural Networks

• Much faster than other neural networks/ 
machine learning techniques

• Good at predicting oscillatory/bounded data

• RNN: Sparsely connected nodes, meant to model neuron behavior

8



RC Breakdown

• System consists of three layers: input, 
reservoir, and output

9



“
■ Disclaimer: I will not go through the 

mathematical theory behind reservoir 
computing; I will simply describe the 
framework and the process here.

10



Reservoir Computing Framework

■ For each time step, we have a 
vector representing the 
current state of the system

■ From this vector, we will 
generate a corresponding 
reservoir state via an 
activation function

■ We extract an output vector 
from a reservoir state via an 
output function

11



Reservoir Computing Framework

■ For each time step, we have a 
vector representing the 
current state of the system

■ From this vector, we will 
generate a corresponding 
reservoir state via an 
activation function

■ We extract an output vector 
from a reservoir state via an 
output function

■ Current state of the system will 
be a low dimensional vector 
(only 2 elements for our sample)

■ The corresponding reservoir 
state will be a high dimensional 
vector. The activation function 
uses the current system state, 
and the previous reservoir state

■ Output vector should be exactly 
the same as the next state of the 
system

NOTES

12



Diagram for reservoir computing (This is actually the basis of all neural networks)

Current State Reservoir State Output State

Activation Function Output Function

13



Diagram for reservoir computing (This is actually the basis of all neural networks)

Current State Reservoir State Output State

Activation Function Output Function

We refer to the dimension of the reservoir 
states as the size of the reservoir

14



Reservoir computing diagram.

15



Reservoir computing diagram.

Note that each vector component is connected 
with every node of the reservoir.

16



Reservoir computing diagram.

We will typically simply to this diagram. It is 
still implied that the arrows represent total 

connections to the reservoir nodes.

17



Reservoir computing diagram.

We will adopt the following terminology.

• The reservoir receives training input from oscillators 1 and 2
• The reservoir outputs predictions for oscillators 1 and 2

18



Reservoir Computing Process

Stages: 
(1) Listening, (2) Training, (3) Predicting



(1) Listening: Building reservoir states one by one

■ For each piece of training data, 𝑢(𝑡), we generate an associated reservoir state, 𝑟 𝑡 .

■ So, if we have 14 seconds worth (maybe 3000 points) of data for the 2-mass, 3-spring 
system, we will generate 14 seconds worth of corresponding reservoir states.

20



(2) Training: Generating an output matrix

■ We will extract information from a reservoir state 𝑟 𝑡 via the following equation:

■ For each of our 3000 data points 𝑢, we have 3000 reservoir states 𝑟. Since these reservoir 
states supposedly correspond to the input states, we expect the following:

■ We will train an output matrix doing the following linear regression:

𝐻 ∗ 𝑟 𝑡 = &𝑢(𝑡 + ∆𝑡)

𝐻 ∗ 𝑟 = 𝑢

𝐻 = 𝑢\ 𝑟

21



(1)(2) Training

■ Typically, we will refer to the listening and training stages together as a single training 
stage.

■ We note the terminology :
• The reservoir receives training input from oscillators 1 and 2

22



(3) Predicting: Using output states as input

■ Once we have trained our output matrix 𝐻, we are ready to predict.
■ Essentially, we generate a new reservoir state from our previous output 𝑢(𝑡 + ∆𝑡).
■ When we extract this from the reservoir, we obtain 𝐻 ∗ 𝑟 𝑡 + ∆𝑡 = 𝑢(𝑡 + 2∆𝑡), 

which is a prediction for the next state of our system

23



(3) Predicting: Using output states as input

■ We note the terminology:

• The reservoir outputs predictions for oscillators 1 and 2
• The reservoir receives prediction input from the predictions for 

oscillators 1 and 2

24



Back to the example…

25



Predicting a 2-mass, 3-spring system

Problem: Given 14 
seconds of data for a 
2-mass, 3-spring 
system, determine 
how the system will 
continue to evolve in 
the future.

26



Predicting a 2-mass, 3-spring system

■ Training stage: input all 14 seconds of data to the reservoir, and obtain the 
output matrix

Oscillator 1
Oscillator 2

27



Predicting a 2-mass, 3-spring system

■ Predicting stage: use the reservoir output as prediction input

Oscillator 1
Oscillator 2

Prediction 1
Prediction 2

28



Predicting a 2-mass, 3-spring system

■ The reservoir has no knowledge of the system data, it is evolving on its own

Oscillator 1
Oscillator 2

Prediction 1
Prediction 2

29



Predicting a 2-mass, 3-spring system

■ The reservoir has no knowledge of the system data, it is evolving on its own

Oscillator 1
Oscillator 2

Prediction 1
Prediction 2

30



The result appears to be a 
viable solution, but how can we 
be sure it is a good prediction?

31



To see how accurate predictions are, we will use 
only 50% of our data for training. The other 50% 
will be reserved for validation.

32



Predicting a 2-mass, 3-spring system

Dotted lines 
represent 
predictions. 

For the most 
part, the 
predictions 
accurately 
represent the 
true data.

33



How might the accuracy be 
affected by looking at a bigger 
system?

34



Predicting a 5-mass, 6-spring system

Will we still be able to predict this?

35



Predicting a 5-mass, 6-spring system

Training Framework
■ We note the terminology:

• The reservoir receives training input from oscillators 1, 2, 3, 4, and 5

36



Predicting a 5-mass, 6-spring system

Predicting Framework
■ We note the terminology:

• The reservoir outputs predictions for oscillators 1, 2, 3, 4, and 5
• The reservoir receives prediction input from the predictions for 

oscillators 1, 2, 3, 4, and 5

37



Predicting a 5-mass, 6-spring system

Dotted lines 
represent 
predictions. 

For the most 
part, the 
predictions 
accurately 
represent the 
true data.

Not as accurate 
as the 2-mass 38



Still accurate, but as the system 
gets bigger we would see a 
breakdown in the solutions.

39



What do I mean?

■ We use a reservoir because it is a high-dimensional 
analogue of our low-dimensional system.

■ If we constantly increase the size of our system, we will 
have to scale the reservoir accordingly.

■ If computer resources were unlimited this wouldn’t 
matter, but computer resources are limited.

40



The fix…

We will have to develop a parallel 
prediction method.



“

■ We will take advantage of the fact that 
the masses are not independent
systems, they are coupled together.

■ In fact, these mass-spring systems are 
examples of network-coupled 
dynamical systems.

42



Developing a Parallel Method — naïve solution

■ The 5 masses are 
connected together as 
shown to the right (this 
is the network that 
describes them)

■ Instead of using one very 
large reservoir to predict 
the system, we will 
assign each node a 
smaller reservoir

43



Developing a Parallel Method — naïve solution

■ Naïve solution: each 
reservoir trains and 
predicts a single node.

■ In our terminology, the 
𝑖!" reservoir receives 
training and prediction 
input from the 𝑖!" node.

■ And, the 𝑖!" reservoir 
outputs predictions for 
the 𝑖!" node.

44



This solution does not work 
since the masses affect each 
other.

We need to make use of the 
network connections.

45



Developing a Parallel Method — better solution

■ We assign one reservoir to 
every node.

■ Each reservoir will train on 
its own node and that 
node’s neighbors but will 
only predict its own node.

■ i.e. the 4!" reservoir receives 
training and prediction 
input from the 4!" node and 
3#$ and 5!" nodes.

■ The 4!" reservoir outputs 
predictions for the 4!" node 
only.

46



Developing a Parallel Method — better solution

■ We assign one reservoir to 
every node.

■ Each reservoir will train on 
its own node and that 
node’s neighbors but will 
only predict its own node.

■ i.e. the 𝑖!" reservoir receives 
training and prediction 
input from the 𝑖!" node and 
that node’s neighbors.

■ The 𝑖!" reservoir outputs 
predictions for the 𝑖!" node 
only.

47



We now look at network systems…

First generic network-coupled dynamical systems, 
then a more concrete example.



Network-Coupled Dynamical Systems

■ By this, I mean individual dynamical 
systems that affect one another.

■ Common examples: mass-spring systems, 
neurons, the weather, literally every 
dynamical system with multiple pieces 
can be thought of as network-coupled.

■ The important thing to note: the most 
apparent network systems are spatial, but 
many network examples are not.

49



Training Framework

50



Parallel Reservoir 
Training Framework

51



Parallel Reservoir 
Training Framework

1. Assign a small reservoir 
to each node

52



Parallel Reservoir 
Training Framework

1. Assign a small reservoir 
to each node

2. The 1%! reservoir 
receives training input 
from the 1%! node and 
its neighboring nodes

53



Parallel Reservoir 
Training Framework

1. Assign a small reservoir 
to each node

2. The 𝑖!" reservoir 
receives training input 
from the 𝑖!" node and 
its neighboring nodes

54



Predicting Framework

55



Parallel Reservoir 
Prediction Framework

1. The 𝑖!" reservoir outputs 
predictions for the 𝑖!"

node only

56



Parallel Reservoir 
Prediction Framework

1. The 𝑖!" reservoir outputs 
predictions for the 𝑖!"

node only
2. The 1%! reservoir receives 

prediction input from the 
1%! node prediction and its 
neighboring nodes’ 
predictions

57



Parallel Reservoir 
Prediction Framework

1. The 𝑖!" reservoir outputs 
predictions for the 𝑖!"

node only
2. The 𝑖!" reservoir receives 

prediction input from the 
𝑖!" node prediction and its 
neighboring nodes’ 
predictions

58



One last example…

59



Kuramoto Oscillators

● System of N oscillators 
described by their phase 
angles, θi

● ωi: natural frequency
● κ: strength of coupling 
● A: connectivity matrix

60



Kuramoto Oscillators

● System of N oscillators 
described by their phase 
angles, θi

● ωi: natural frequency
● κ: strength of coupling 
● A: connectivity matrix

● Kuramoto oscillators are 
essentially spinning tops 
that affect each others’ 
angular frequencies

● The angle difference between 
connected oscillators is 
directly proportional to the 
change in oscillator frequency 61



Kuramoto Oscillators

● Looking at the 5!" oscillator in 
particular:

62



Kuramoto Oscillators

● Looking at the 5!" oscillator in 
particular:

● It is connected to both the 3#$
and the 4!" oscillators.

63



Kuramoto Oscillators

● Looking at the 5!" oscillator in 
particular:

● It is connected to both the 3#$
and the 4!" oscillators.

● The angle difference between 
the 5!" and 3#$ oscillators is 0°, 
so neither frequency will be 
affected.

64



Kuramoto Oscillators

● Looking at the 5!" oscillator in 
particular:

● It is connected to both the 3#$
and the 4!" oscillators.

● The angle difference between 
the 5!" and 3#$ oscillators is 0°, 
so neither frequency will be 
affected.

65



Kuramoto Oscillators

● Looking at the 5!" oscillator in 
particular:

● It is connected to both the 3#$
and the 4!" oscillators.

● The angle difference between 
the 5!" and 3#$ oscillators is 0°, 
so neither frequency will be 
affected.

● The angle difference between 
the 5!" and 4!" oscillators is 
larger, so both frequencies will 
be pulled towards each other.

66



Kuramoto Oscillators

● Looking at the 5!" oscillator in 
particular:

● It is connected to both the 3#$
and the 4!" oscillators.

● The angle difference between 
the 5!" and 3#$ oscillators is 0°, 
so neither frequency will be 
affected.

● The angle difference between 
the 5!" and 4!" oscillators is 
larger, so both frequencies will 
be pulled towards each other.

67



Kuramoto Oscillators

● Looking at the 5!" oscillator in 
particular:

● It is connected to both the 3#$
and the 4!" oscillators.

● The angle difference between 
the 5!" and 3#$ oscillators is 0°, 
so neither frequency will be 
affected.

● The angle difference between 
the 5!" and 4!" oscillators is 
larger, so both frequencies will 
be pulled towards each other.

● How far the frequency is pulled 
depends on the coupling 
constant.
● 0, small, large

68



Kuramoto Oscillators

● Looking at the 5!" oscillator in 
particular:

● It is connected to both the 3#$
and the 4!" oscillators.

● The angle difference between 
the 5!" and 3#$ oscillators is 0°, 
so neither frequency will be 
affected.

● The angle difference between 
the 5!" and 4!" oscillators is 
larger, so both frequencies will 
be pulled towards each other.

● How far the frequency is pulled 
depends on the coupling 
constant.
● 0, small, large

69



Kuramoto Oscillators

● Looking at the 5!" oscillator in 
particular:

● It is connected to both the 3#$
and the 4!" oscillators.

● The angle difference between 
the 5!" and 3#$ oscillators is 0°, 
so neither frequency will be 
affected.

● The angle difference between 
the 5!" and 4!" oscillators is 
larger, so both frequencies will 
be pulled towards each other.

● How far the frequency is pulled 
depends on the coupling 
constant.
● 0, small, large

70



Kuramoto Oscillators

● System of 50 oscillators 

described by their phase 

angles.

● ωi: frequencies between ±pi

● κ: 0.5

● A: connectivity matrix —

frequency assortative

71



Kuramoto Oscillators

■ Kuramoto oscillators are 
“spinning tops” which means 
their angles, although 
oscillatory, are not bounded

■ We will not predict the angle, 
but rather the cosine and sine of 
the angle (x and y coordinates)

72



Kuramoto Oscillators

■ Below are sine/cosine plots for two of the oscillators in our 50 
node Kuramoto oscillator system

73



Kuramoto Oscillators

■ Sine/cosine predictions for these two oscillators (training 
phase not shown)

74



What do these results show?

• The parallel prediction scheme is not perfect, 
but it works well (captures the essence of the 
model)

• The single reservoir scheme does not work for 
any reasonably sized reservoir, so this is a clear 
improvement

75



Two more slides showing the 
accuracy of the predictions…

76



Kuramoto Oscillators

77



Kuramoto Oscillators

■ Frequency spectrum for the true vs. predicted 50 node oscillator model

78



Why are these good?

• Many applications of network prediction care 
about global accuracy and local accuracy

• The frequency spectrum proves that although the 
local predictions aren’t as good, the global 
prediction is better

• Ex. Weather prediction

79



Next Steps

• Improve local accuracy

• Predict more than one node with each reservoir

• Develop prediction scheme when we don’t know 
the next connections (this is already being done)

80



Acknowledgements

• TREND Program at UMD

• Chaos Lab at UMD: Michelle Girvan, Ed Ott, 
Thomas Antonsen

• Keshav Srinivasan

81


