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The dotted line 
represents the reservoir 
prediction, and the 
faded line behind it is 
the true data. In this 
case, the reservoir 
computer predicts 
nearly perfectly. Notice, 
however, that the blue 
dotted line does not 
exactly match up with 
the faded line behind it 
at times. This is an 
example of error in the 
prediction.

In this case, the 
reservoir computer 
makes many more 
errors than the 2-mass 
system. In particular, 
notice how the peaks of 
the prediction never 
quite reach as far as the 
true data. Although the 
error may be small, it is 
error nonetheless.

Figure 3(a). Prediction plot for the 2-mass, 3-spring system. Left of the 
black line the system is training. The prediction occurs to the right. 

Figure 3(b). Prediction plot for the 5-mass, 6-spring system. Left of the 
black line the system is training. The prediction occurs to the right. 
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 Imagine two frictionless carts on a 
track, attached to each other by a spring, 
and each attached to the wall by a spring. 
This would be a 2-mass, 3-spring system.
 If the two carts are pulled apart then 
allowed to move freely, their motion would 
be oscillatory. Figure 2(a) to the right 
shows this motion. A natural question may 
arise: how do we predict the future 
evolution of this system given this data?
 Reservoir computing is the answer! By 
generating reservoir states for each 
training datum and training the reservoir 
output layer, we can predict this system.

 Instead of only two carts, imagine now 
�ve. Figure 2(b) shows a possible motion 
of this 5-mass, 6-spring system.
 Again, we can use reservoir computing 
to predict the future evolution of this 
system. You will notice, however, that the 
prediction results are not quite as perfect 
as the previous example.

Figure 2(a). Position vs. time plot for a 
2-mass, 3-spring system.

Figure 2(b). Position vs. time plot for a 
5-mass, 5-spring system.
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Figure 1. Diagram of a reservoir computer. Method begins with the switch in the “Train” position. Once all 
training data has been processed and output weights are adjusted, switch is �ipped to “Predict” position. Now, 
output from the reservoir is used as input, and the system evolves without any data from the true system state.

• Machine learning technique that uses a recurrent neural network, 
known as a “reservoir”, to predict the evolution of a dynamical system
 • Neural network: sparsely connected nodes that evolve over time, 
similar to neural activity
• Reservoir has no knowledge of system dynamics; it adapts to 
known training data for the system
• Method:
 1) Listening: input system states and generate reservoir states
 2) Training: adjust output layer such that reservoir output closely 
                         approximates reservoir input
 3) Prediction: use reservoir output as the next input          

Next Steps
 The predictions for these small mass-spring systems were 
good, but not perfect. If we were to look at systems with 
hundreds or even thousands of components, we would see that 
the error would quickly grow out of control.
 How do we �x this? One way is to take advantage of the fact 
that the components are not independent, they are coupled 
together. By using this, we can develop a parallel reservoir 
scheme that will drastically reduce error in large sytems.
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  Learning

• Exact solution
 

• Provides a physical 
understanding of the 
problem

• Impractical for certain 
systems
 

• Impossible for others

• Can give very accurate 
results

• Typically need some 
knowledge of solution form
 

• Impractical for complex 
systems

• Good at predicting all 
types of systems
 

• No physical knowledge 
required

• Prevides no physical 
understanding of the 
problem
 

• Time required varies greatly

Predicting dynamics is important, but how is it done? People 
from various academic departments will approach this problem 
in different ways. Here is an outline of some pros and cons of 
each approach. 

Prediction Strategies

• Predicting dynamically evolving systems is important for 
applications in meteorology, biology, etc.
 

• Academic groups will often approach this problem from 
different perspectives
 

• Reservoir computing, a machine learning technique, is a 
promising candidate for predicting chaotic systems

• In this poster, the focus is on predicting the time evolution of 
mass-spring systems

• A thorough treatment of reservoir computing is provided, and 
prediction results are explained

Summary

Predicting Oscillatory Systems with 
Machine Learning Nolan J. Coble


