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Problem statement
Let C be a geometrically-local shallow-depth quantum circuit acting on n qubits.

Goal: Compute

Pr
[
measuring x after preparing C

∣∣0⊗n
〉 ]

± ϵ =
∣∣⟨x|C ∣∣0⊗n

〉∣∣2 ± ϵ. (1)

What is the classical complexity of computing | ⟨x|C |0⊗n⟩ |2 to within additive error ϵ?
In the worst-case, i.e. guaranteed run-time/error for all such circuits, and arbitrary
2-qubit gates.
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1D geometrically-local

Notation: (1) input to circuits will be on the bottom, (2) outputs will be on top.

Shallow-depth: d = O(log n).

Classical matrix-product state algorithms are able to solve this problem efficiently and with
inverse polynomial error.

Note: Not restricted to brickwork architecture.
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2D geometrically-local

Grid of
√
n×

√
n qubits.

[BGM20] give a polynomial time classical algorithm to solve this case for inverse polynomial
error. 1

Unclear how to extend the result of [BGM20] to 3 dimensions without an exponential blow-up.

1Sergey Bravyi, David Gosset, and Ramis Movassagh, arXiv:1909.11485
Nolan J. Coble, Matthew Coudron Divide-and-conquer method for approximating output probabilities... 2 December 2021 4 / 43



3D geometrically-local

Cube of n1/3 × n1/3 × n1/3 qubits.

Our result gives a quasi-polynomial time classical algorithm for this case.
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Relation to sampling problems
Sampling: output a bitstring x ∈ {0, 1}n according to the probability distribution
p(x) = |⟨x|C |0⊗n⟩|2.

Estimating output probabilities: Compute |⟨x|C |0⊗n⟩|2 ± ϵ.

[Mov20] In the worst case, #P-hard when ϵ ≤ 2−n2

=⇒ can only hope to solve this when
ϵ≫ 2−n2

. 2

For random circuits |⟨x|C |0⊗n⟩|2 ∼ 2−n.

In this work |⟨x|C |0⊗n⟩|2 ≥ 1/poly(n) =⇒ circuit must have some special properties.

2Ramis Movassagh, arXiv:1909.06210
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Why should we care about this error?

Relevant for classically simulating some hybrid quantum algorithms.

Geometrically-local quantum circuit combined with classical post-processing.
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Why should we care about this error?

Such classical algorithms can simulate:

Pclassical = AND: |⟨0⊗n|X⊗nC |0⊗n⟩|2 ± ϵ, Pclassical = OR: 1− |⟨0⊗n|C |0⊗n⟩|2 ± ϵ.

Pclassical = XOR:
∣∣⟨0⊗n|CZ⊗nC† |0⊗n⟩

∣∣2 ± ϵ.
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Note
Only need to solve the problem for |⟨0⊗n|C |0⊗n⟩|2 ± ϵ since∣∣⟨x|C ∣∣0⊗n

〉∣∣2 =
∣∣∣ 〈0⊗n

∣∣ (⊗
i

Xxi)C
∣∣0⊗n

〉 ∣∣∣2 (2)

and (
⊗

iXi)C is still geometrically-local, shallow-depth.

In arXiv:2012.0546 we consider 3D geometrically-local, in this talk I will be discussing the
methods in terms of 1D geometrically-local.

Notes:

The algorithm has a divide-and-conquer structure.
Base-case will contain circuits in one fewer dimension.
Not explicitly giving the algorithm, just a single divide-and-conquer step.
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Preliminaries



Lightcone

Let A be a geometrically-local subset of the qubits.

Lightcone of A will mean the gates in the lightcone or the qubits in the lightcone.
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Reverse lightcone
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Motivation behind lightcones

If C is geometrically-local and shallow-depth, and |A| is poly-logarithmic, then the [reverse] lightcone
of A is only poly-logarithmically wide.
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Slicing the circuit

A slice consists of three regions B, M , F . With appropriate widths, L and R can be
lightcone-separated from M .
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Slicing the circuit

Subcircuits of C:

CB∪M∪F : gates in the reverse lightcone of M ; CL, CR are the remaining gates.

Property: C = CL ◦ CR ◦ CB∪M∪F . The order is important!
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Slicing the circuit

Cwrap: gates in the lightcone of B ∪M ∪ F that are not in CB∪M∪F .

C ′
L ≡ C†

L−Wrap ◦ CL.

C ′
R ≡ C†

R−Wrap ◦ CR.
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Schmidt approximation
Definition
Let |ψ⟩B∪F ≡ ⟨0M |CB∪M∪F |0B∪M∪F ⟩.

Note that, ⟨0ALL|CL∪R |0L∪R⟩ ⊗ |ψ⟩B∪F = ⟨0ALL|C |0ALL⟩.

|0ALL⟩ will refer to the all zero state on the unmeasured qubits.
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Schmidt approximation
Let |ψ⟩B∪F ≈

∑
i λi |vi⟩B ⊗ |wi⟩F be the Schmidt decomposition of |ψ⟩B∪F . Then

⟨0ALL|CL∪R |0L∪R⟩ ⊗ |ψ⟩B∪F ≈
p(n)∑
i=1

λi ⟨0ALL|CL∪R |0L∪R⟩ ⊗ |vi⟩B ⊗ |wi⟩F (3)

=

p(n)∑
i=1

λi

(
⟨0L∪B |CL |0⟩L ⊗ |vi⟩B

)(
⟨0F∪R|CR |0R⟩ ⊗ |wi⟩F

)
. (4)

Notes:

How could we construct λi, |vi⟩B , |wi⟩F with geometrically-local, shallow-depth quantum
circuits?

Why should this state have most of its weight on a few Schmidt-coefficients?

We do not solve the problem via the above equations.
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Slicing the circuit
1 Let {Ki = Bi ∪Mi ∪ Fi} be a set of Ω(n) evenly spaced slices of width O(d).

2 CBi∪Mi∪Fi
, CL,i, Ci,R, and Cwrapi

are all defined analogously as before.

3 Ci,j is defined similarly to CL,i and Ci,R.

4 At a single slice: C = CL,i ◦ Ci,R ◦ CBi∪Mi∪Fi .

5 At two slices: C = CL,i ◦ Ci,j ◦ Cj,R ◦ CBi∪Mi∪Fi ◦ CBj∪Mj∪Fj
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Heavy slices
Many of the slices have large leading Schmidt coefficients:

Lemma

Suppose |⟨0ALL|C |0ALL⟩|2 ≥ 1/poly(n). In every interval of length log7(n), there are at least log(n)
slices satisfying:

λ1 ≥ 1− 1

log4 n
. (5)

The set of slices that satisfying Equation (5) will be denoted as Kheavy ⊂ {Ki}.

We will typically consider ∆ heavy slices from an interval of width log7(n).
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Block-encoding
For slices in Kheavy, we can produce the projectors onto the leading Schmidt coefficients
(|w1⟩ ⟨w1|Fi

, |v1⟩ ⟨v1|Bi
) via geometrically-local, shallow-depth quantum circuits.

Lemma (Lemma 53 of [GSLW19])

For any constant integer K > 0, the following is a geometrically-local quantum circuit which gives a
block encoding for ρKF ≡ trB(|ψ⟩ ⟨ψ|B∪F )

K , and has depth O(dK2):

Vρk
F
=

k∏
i=1

(
C†

Bi∪M ′
i∪F ′

i
⊗ IMi∪F

)
·
(
IBi

⊗ SWAPMi∪F,M ′
i∪F ′

i

) (
CBi∪M ′

i∪F ′
i
⊗ IMi∪F

)
.

In other words,

ρKF =
(
⟨0|Bk∪M′

k∪F ′
k∪Mk

⊗ IF

)
Vρk

F

(
|0⟩Bk∪M′

k∪F ′
k∪Mk

⊗ IF

)
where Bk = B1 ∪B2 ∪ · · · ∪Bk, M′

k =M ′
1 ∪M ′

2 ∪ · · · ∪M ′
k, etc.

Takeaway: Vρk
F

is a geometrically-local, shallow-depth circuit which produces ρKF after
post-selection.
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Projector lemma
Define:

PK
Fi

≡ 1

λK1

〈
0Bi,Mi,F

1
i ,...F

k
i

∣∣∣VPk
Fi

∣∣∣0Bi,Mi,F
1
i ,...F

k
i

〉
(6)

and

PK
Bi

≡ 1

λK1

〈
0Fi,Mi,B

1
i ,...B

K
i

∣∣∣VPk
Bi

∣∣∣0Fi,Mi,B
1
i ,...B

K
i

〉
(7)

Lemma
For any Ki ∈ Kheavy,

∥PK
Fi

− |w1⟩ ⟨w1|Fi
∥1 ≤ 1

poly(n)
(8)

and ∥PK
Bi

− |v1⟩ ⟨v1|Bi
∥1 ≤ 1

poly(n)
(9)

Note: In this case, K is the number of times the block-encoded circuit is going to be applied. The
effect of K is hidden in this lemma.
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Projector lemma
Definition

ΠK
Fi

≡ CWrapi
PK
Fi
C†

Wrapi
(10)

For a single i, consider
ΠK

Fi
C = ΠK

Fi
(CL,i ◦ Ci,R ◦ CBi∪Mi∪Fi

). (11)

What does this do?

Nolan J. Coble, Matthew Coudron Divide-and-conquer method for approximating output probabilities... 2 December 2021 23 / 43



ΠK
Fi
(CL,i ◦ Ci,R ◦ CBi∪Mi∪Fi

) = CWrapi
PK
Fi
C†

Wrapi
(CL,i ◦ Ci,R ◦ CBi∪Mi∪Fi

)
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= CWrapi
(C ′

L,i ◦ C ′
i,R ◦ PK

Fi
CBi∪Mi∪Fi

)
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ΠK
Fi
C = CL,i ◦ Ci,R ◦ PK

Fi
CBi∪Mi∪Fi
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Linear combination lemma



Linear Combination Lemma
Definition

Let σ ∈ P([∆]) \ ∅ where [∆] = {1, . . . ,∆}. Define

|Ψσ⟩ =
⊗
j∈σ

ΠK
Fj

⊗
i∈[∆]

⟨0Mi
|C |0ALL⟩ . (12)

Lemma
Consider a set Kheavy of heavy slices. Then, for any subset of ∆ slices, {Ki}i∈[∆] ⊆ Kheavy:

∥∥∥∥∥∥
∑

σ∈P([∆])

(−1)|σ| |Ψσ⟩ ⟨Ψσ|

∥∥∥∥∥∥ =

∥∥∥∥∥∥|Ψ∅⟩ ⟨Ψ∅| −
∑

σ∈P([∆])\∅

(−1)|σ|+1 |Ψσ⟩ ⟨Ψσ|

∥∥∥∥∥∥ ≤ 1/poly(n) (13)

Note: ⟨0ALL|Ψ∅⟩ ⟨Ψ∅|0ALL⟩ = ⟨0ALL|
⊗

i∈[∆] ⟨0Mi |C |0ALL⟩ ⟨0ALL|C† ⊗
i∈[∆] ⟨0Mi |0ALL⟩ =

| ⟨0ALL|C |0ALL⟩ |2
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Proof
We will use the notation ρ[A] = A |0ALL⟩ ⟨0ALL|A†. Note that ρ[BA] = Bρ[A]B†. With this∥∥∥∥∥∥

∑
σ∈P([∆])

(−1)|σ| |Ψσ⟩ ⟨Ψσ|

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑

σ∈P([∆])

(−1)|σ|ρ

⊗
j∈σ

ΠK
Fj

⊗
i∈[∆]

⟨0Mi
|C

∥∥∥∥∥∥ . (14)

We first consider the above without post-selection∥∥∥∥∥∥
∑

σ∈P([∆])

(−1)|σ|ρ

⊗
j∈σ

ΠK
Fj
C

∥∥∥∥∥∥ . (15)
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Proof

Recall:

for σ = {i} : C = CL,j ◦ Cj,R ◦ CBj∪Mj∪Fj
(16)

for σ = {i, j} : C = CL,i ◦ Ci,j ◦ Cj,R ◦ CBi∪Mi∪Fi
◦ CBj∪Mj∪Fj

(17)

∥∥∥∥∥∥
∑

σ∈P([∆])

(−1)|σ|ρ

⊗
j∈σ

ΠK
Fj
C

∥∥∥∥∥∥ = (18)

∥∥∥∥∥∥
∑

σ∈P([∆])

(−1)|σ|ρ

⊗
j∈σ

ΠK
Fj

CL,σ1
◦

⊗
j∈[|σ|−1]

Cσj ,σj+1
◦ Cσ|σ|,R ◦

⊗
j∈σ

CBj∪Mj∪Fj

∥∥∥∥∥∥ (19)
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Proof
For a single i ∈ σ ⊆ [∆], recall the following:

ΠK
Fi
(CL,i ◦ Ci,R ◦ CBi∪Mi∪Fi

) = CL,i ◦ Ci,R ◦ PK
Fi
CBi∪Mi∪Fi

(20)

With this, we have∥∥∥∥∥∥
∑

σ∈P([∆])

(−1)|σ|ρ

⊗
j∈σ

ΠK
Fj

CL,σ1 ◦
⊗

j∈[|σ|−1]

Cσj ,σj+1 ◦ Cσ|σ|,R ◦
⊗
j∈σ

CBj∪Mj∪Fj

∥∥∥∥∥∥ = (21)

∥∥∥∥∥∥
∑

σ∈P([∆])

(−1)|σ|ρ

CL,σ1 ◦
⊗

j∈[|σ|−1]

Cσj ,σj+1 ◦ Cσ|σ|,R ◦
⊗
j∈σ

PK
Fj
CBj∪Mj∪Fj

∥∥∥∥∥∥ (22)
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Proof
Consider if ∆ = 2. Our previous equation becomes:∥∥∥∥∥∥

∑
σ∈P([∆])

(−1)|σ|ρ

CL,σ1
◦

⊗
j∈[|σ|−1]

Cσj ,σj+1
◦ Cσ|σ|,R ◦

⊗
j∈σ

PK
Fj
CBj∪Mj∪Fj

∥∥∥∥∥∥ = (23)

∥∥∥ρ[C] (24)

−ρ
[
CL,1 ◦ C1,R ◦ PK

F1
CB1∪M1∪F1

)
(25)

−ρ
[
CL,2 ◦ C2,R ◦ PK

F2
CB2∪M2∪F2

]
(26)

+ρ
[
CL,1 ◦ C1,2 ◦ C2,R ◦ PK

F1
CB1∪M1∪F1

◦ PK
F2
CB2∪M2∪F2

] ∥∥∥ (27)

(28)

Expanding the circuit in each:∥∥∥ρ[CL,1 ◦ C1,2 ◦ C2,R ◦ CB1∪M1∪F1
◦ CB2∪M2∪F2

] (29)

−ρ
[
CL,1 ◦ C1,2 ◦ C2,R ◦ PK

F1
CB1∪M1∪F1

◦ CB2∪M2∪F2

]
(30)

−ρ
[
CL,1 ◦ C1,2 ◦ C2,R ◦ CB1∪M1∪F1

◦ PK
F2
CB2∪M2∪F2

]
(31)

+ρ
[
CL,1 ◦ C1,2 ◦ C2,R ◦ PK

F1
CB1∪M1∪F1 ◦ PK

F2
CB2∪M2∪F2

] ∥∥∥ (32)
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Proof

∥∥∥(CL,1 ◦ C1,2 ◦ C2,R

)
◦
(
ρ[CB1∪M1∪F1

◦ CB2∪M2∪F2
]− ρ

[
PK
F1
CB1∪M1∪F1

◦ CB2∪M2∪F2

]
−ρ

[
CB1∪M1∪F1

◦ PK
F2
CB2∪M2∪F2

]
+ ρ

[
PK
F1
CB1∪M1∪F1

◦ PK
F2
CB2∪M2∪F2

] )
◦
(
CL,1 ◦ C1,2 ◦ C2,R

)†∥∥∥

Can rewrite as a tensor product:∥∥∥(CL,1 ◦ C1,2 ◦ C2,R

)
◦

⊗
j∈{1,2}

(
ρ[CBj∪Mj∪Fj

]− ρ[PK
Fj
CBj∪Mj∪Fj

]
)
◦
(
CL,1 ◦ C1,2 ◦ C2,R

)†∥∥∥ (33)
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Proof
In general, we have:

=
∥∥∥(CL,1 ◦

⊗
j∈[∆−1]

Cσj ,σj+1
◦ Cσ∆,R

)
◦
⊗
j∈[∆]

(
ρ[CBj∪Mj∪Fj

]− ρ[PK
Fj
CBj∪Mj∪Fj

]
)

(34)

◦
(
CL,1 ◦

⊗
j∈[∆−1]

Cσj ,σj+1
◦ Cσ∆,R

)†∥∥∥. (35)

Since (CL,1 ◦
⊗

j∈[∆−1] Cσj ,σj+1 ◦ Cσ∆,R) is unitary:

=
∏
j∈∆

∥∥∥ρ[CBj∪Mj∪Fj
]− ρ[PK

Fj
CBj∪Mj∪Fj

]
∥∥∥ (36)
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Proof
To sum-up to this point:∥∥∥∥∥∥

∑
σ∈P([∆])

(−1)|σ|ρ

⊗
j∈σ

ΠK
Fj
C

∥∥∥∥∥∥ =
∏
j∈∆

∥∥∥ρ[CBj∪Mj∪Fj ]− ρ[PK
Fj
CBj∪Mj∪Fj ]

∥∥∥ . (37)
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Proof
Since PK

Fj
, ΠK

Fj
act trivially on Mj , the previous work holds even under post-selection on Mj :∥∥∥∥∥∥

∑
σ∈P([∆])

(−1)|σ|ρ
[
(⊗j∈σΠ

K
Fj

〈
0Mj

∣∣)C]
∥∥∥∥∥∥ =

∏
j∈[∆]

∥∥∥ρ [〈0Mj

∣∣CBj∪Mj∪Fj

]
− ρ

[
PK
Fj

〈
0Mj

∣∣CBj∪Mj∪Fj

]∥∥∥
(38)

Each term in the above product can be bounded as:∥∥∥ρ [〈0Mj

∣∣CBj∪Mj∪Fj

]
− ρ

[
PK
Fj

〈
0Mj

∣∣CBj∪Mj∪Fj

]∥∥∥ ≤ 1

log4 n
(39)
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Proof
Ultimately,∥∥∥∥∥∥

∑
σ∈P([∆])

(−1)|σ| |Ψσ⟩ ⟨Ψσ|

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑

σ∈P([∆])

(−1)|σ|ρ

⊗
j∈σ

ΠK
Fj

⊗
i∈[∆]

⟨0Mi |C

∥∥∥∥∥∥ (40)

=
∏

j∈[∆]

∥∥∥ρ [〈0Mj

∣∣CBj∪Mj∪Fj

]
− ρ

[
PK
Fj

〈
0Mj

∣∣CBj∪Mj∪Fj

]∥∥∥ (41)

≤ (
1

log4 n
)∆ ≤ 1/poly(n), (42)

when ∆ = logn. ■

Note: we can find log n slices in each region of size log7 n.
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Approximations

We have: ∥∥∥∥∥∥| ⟨0ALL|C |0ALL⟩ |2 −
∑

σ∈P([∆])\∅

(−1)|σ|+1 ⟨0ALL|Ψσ⟩ ⟨Ψσ|0ALL⟩

∥∥∥∥∥∥ ≤ 1/poly(n), (43)

But, |Ψσ⟩ =
⊗

j∈σ Π
K
Fj

⊗
i∈[∆] ⟨0Mi |C |0ALL⟩ are produced by circuits acting on all n qubits.
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Approximations

Recall: |Ψσ⟩ =
⊗

j∈σ Π
K
Fj

⊗
i∈[∆] ⟨0Mi |C |0ALL⟩.

Lemma

Each |Ωj⟩ = ΠK
Fj

⟨0Mi |C |0ALL⟩ is close to a product state across the cut Bj ∪Mj ∪ Fj .∥∥∥|Ωj⟩ ⟨Ωj | − 1/λj1σLj ⊗ σRj

∥∥∥ ≤ 1

log4 n
(44)

The state σLj (resp. σRj ) is defined using CBj∪Mj∪Fj , PK
Fj

(resp. PK
Bj

), and CL,j (resp. Cj,R).
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Approximations

Given 1D geometrically-local, depth-d quantum circuit C on n qubits, we wish to approximate
| ⟨0ALL|C |0ALL⟩ |2 via ∑

σ∈P([∆])\∅

(−1)|σ|+1 ⟨0ALL|Ψσ⟩ ⟨Ψσ|0ALL⟩ . (45)

Given ∆ heavy slices from a region of log7 n qubits, we can construct O(∆2) new quantum circuits
Γℓ:

Each Γℓ is 1D geometrically-local and shallow-depth.

∆ of the circuits Γℓ act on at most 3
4n qubits

The remaining O(∆2) act on at most log7 n qubits.

The quantities | ⟨0ALL|Γℓ |0ALL⟩ |2 can be used to approximate Equation (45).
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Extending to 3D circuits



3D Circuits
C is a 3D geometrically-local shallow quantum circuit on n1/3 × n1/3 × n1/3 qubits. We will perform
division along a single dimension of the cube. Choose Ω(n1/3) slices from along this dimension.

1 Find ∆ heavy slices from the middle log7 n of the cube.

2 Construct O(∆2) new quantum circuits Γℓ.

3 Recursively approximate | ⟨0ALL|Γℓ |0ALL⟩ |2 for the ∆ circuits with width ≤ 3
4n

1/3.

4 Use the algorithm from [BGM20] to approximate | ⟨0ALL|Γℓ |0ALL⟩ |2 for the remaining circuits.

5 Combine solutions to approximate | ⟨0ALL|C |0ALL⟩ |2.

Nolan J. Coble, Matthew Coudron Divide-and-conquer method for approximating output probabilities... 2 December 2021 40 / 43



3D Circuits
C is a 3D geometrically-local shallow quantum circuit on n1/3 × n1/3 × n1/3 qubits. We will perform
division along a single dimension of the cube. Choose Ω(n1/3) slices from along this dimension.

1 Find ∆ heavy slices from the middle log7 n of the cube.

2 Construct O(∆2) new quantum circuits Γℓ.

3 Recursively approximate | ⟨0ALL|Γℓ |0ALL⟩ |2 for the ∆ circuits with width ≤ 3
4n

1/3.

4 Use the algorithm from [BGM20] to approximate | ⟨0ALL|Γℓ |0ALL⟩ |2 for the remaining circuits.

5 Combine solutions to approximate | ⟨0ALL|C |0ALL⟩ |2.

Nolan J. Coble, Matthew Coudron Divide-and-conquer method for approximating output probabilities... 2 December 2021 40 / 43



3D Circuits
C is a 3D geometrically-local shallow quantum circuit on n1/3 × n1/3 × n1/3 qubits. We will perform
division along a single dimension of the cube. Choose Ω(n1/3) slices from along this dimension.

1 Find ∆ heavy slices from the middle log7 n of the cube.

2 Construct O(∆2) new quantum circuits Γℓ.

3 Recursively approximate | ⟨0ALL|Γℓ |0ALL⟩ |2 for the ∆ circuits with width ≤ 3
4n

1/3.

4 Use the algorithm from [BGM20] to approximate | ⟨0ALL|Γℓ |0ALL⟩ |2 for the remaining circuits.

5 Combine solutions to approximate | ⟨0ALL|C |0ALL⟩ |2.

Nolan J. Coble, Matthew Coudron Divide-and-conquer method for approximating output probabilities... 2 December 2021 40 / 43



3D Circuits
C is a 3D geometrically-local shallow quantum circuit on n1/3 × n1/3 × n1/3 qubits. We will perform
division along a single dimension of the cube. Choose Ω(n1/3) slices from along this dimension.

1 Find ∆ heavy slices from the middle log7 n of the cube.

2 Construct O(∆2) new quantum circuits Γℓ.

3 Recursively approximate | ⟨0ALL|Γℓ |0ALL⟩ |2 for the ∆ circuits with width ≤ 3
4n

1/3.

4 Use the algorithm from [BGM20] to approximate | ⟨0ALL|Γℓ |0ALL⟩ |2 for the remaining circuits.

5 Combine solutions to approximate | ⟨0ALL|C |0ALL⟩ |2.

Nolan J. Coble, Matthew Coudron Divide-and-conquer method for approximating output probabilities... 2 December 2021 40 / 43



3D Circuits
C is a 3D geometrically-local shallow quantum circuit on n1/3 × n1/3 × n1/3 qubits. We will perform
division along a single dimension of the cube. Choose Ω(n1/3) slices from along this dimension.

1 Find ∆ heavy slices from the middle log7 n of the cube.

2 Construct O(∆2) new quantum circuits Γℓ.

3 Recursively approximate | ⟨0ALL|Γℓ |0ALL⟩ |2 for the ∆ circuits with width ≤ 3
4n

1/3.

4 Use the algorithm from [BGM20] to approximate | ⟨0ALL|Γℓ |0ALL⟩ |2 for the remaining circuits.

5 Combine solutions to approximate | ⟨0ALL|C |0ALL⟩ |2.

Nolan J. Coble, Matthew Coudron Divide-and-conquer method for approximating output probabilities... 2 December 2021 40 / 43



3D Circuits
C is a 3D geometrically-local shallow quantum circuit on n1/3 × n1/3 × n1/3 qubits. We will perform
division along a single dimension of the cube. Choose Ω(n1/3) slices from along this dimension.

1 Find ∆ heavy slices from the middle log7 n of the cube.

2 Construct O(∆2) new quantum circuits Γℓ.

3 Recursively approximate | ⟨0ALL|Γℓ |0ALL⟩ |2 for the ∆ circuits with width ≤ 3
4n

1/3.

4 Use the algorithm from [BGM20] to approximate | ⟨0ALL|Γℓ |0ALL⟩ |2 for the remaining circuits.

5 Combine solutions to approximate | ⟨0ALL|C |0ALL⟩ |2.

Nolan J. Coble, Matthew Coudron Divide-and-conquer method for approximating output probabilities... 2 December 2021 40 / 43



3D Circuits
Algorithm has many parameters: depth of recursion, power of the block-encoding K, width of
region to look for heavy slices, number of slices, etc.

We saw each of these parameters show up in the approximation error (approximating the
original quantity with a weighted sum of new problems, approximating these new problems with
smaller problems). They also show up in the run-time analysis.

Parameters can be chosen so that run-time is quasi-polynomial:

T (n) = 2d
3·polylog(n). (46)

and error is inverse polynomial, f(n) ≤ 1/poly(n).
Recursive run-time and error analyses/full algorithm description can be found in the paper.
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Open problems
Improve to polynomial run-time.

Recursively approximate output probabilities of any D-dimensional geometrically-local circuit.

Consider circuits that are low-depth but not necessarily geometrically local.

Estimate output bit of low-depth quantum circuit combined with classical post-processing.
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