Hamiltonians whose low-energy states require $\Omega(n)$ T gates

Nolan J. Coble, Matthew Coudron, Jon Nelson, and Seyed Sajjad Nezhadi

University of Maryland, College Park, Joint Center for Quantum Information and Computer Science

Abstract

• The QMA-hardness of the Local Hamiltonian (LH) problem with 1/poly(n) gap implies that we cannot 1/poly(n)-approximate the ground-state energy of arbitrary local Hamiltonians in BQP, unless BQP=QMA.

• The **Quantum PCP Conjecture** (QPCP) asserts that the same is true even for a contant, $\Omega(1)$, relative promise gap. If true, QPCP implies the existence of Hamiltonians with interesting low-energy space properties.

Rotating CSS Hamiltonians

CSS Hamiltonian: $H = \frac{1}{m} \sum_{i=1}^{m_x} \frac{1}{2} (I - X^{\otimes k})_i + \frac{1}{m} \sum_{i=1}^{m_z} \frac{1}{2} (I - Z^{\otimes k})_i$

Ground-states of a CSS Hamiltonian are highly-stabilizer. Key idea: rotate to a basis which is far from stabilizer.

Single-qubit gates: H, Hadamard, and $D \equiv e^{i\frac{\pi}{8}Y}$

• We exhibit one such prerequisite to QPCP: an explicit local Hamiltonian whose low-energy states all require $\omega(\log n)$ T gates, i.e. they are very non-stabilizer. In fact, we show a stronger result that the low-energy states require $\Omega(n)$ T gates, which is not necessarily implied by QPCP.

• Applying our procedure to the NLTS family from [ABN22] yields an NLTS Hamiltonian whose low-energy states also require $\Omega(n)$ T gates.

 h_1

Local Hamiltonian:
$$H = \frac{1}{m} \sum_{i=1}^{m} h_i \otimes I_{2^{n-k}}$$

Ground-state energy: $E_{gs} \equiv \min_{|\psi\rangle} \langle \psi | H | \psi \rangle$

LH Problem: given *H*, $\varepsilon > 0$, $\delta(n)$, decide between

(1) $E_{gs} \leq \epsilon$ (2) $E_{gs} \geq \epsilon + \delta(n)$

If $C \subseteq QMA = QPCP$ is conjectured, then for some constant $\delta > 0$ we cannot estimate $E_{qs} \pm \delta$ in C.

Rotated CSS Hamiltonian: $\tilde{H} \equiv D^{\otimes n} H D^{\dagger \otimes n} = \frac{1}{m} \sum_{i=1}^{m_x} \frac{1}{2} (I - H^{\otimes k})_i + \dots$

Theorem. There are ϵ >0 and 0<c<1 s.t. if $|\psi\rangle$ can be prepared by $\leq cn$ T gates, then $|\psi\rangle$ has energy $\langle \psi | \tilde{H} | \psi \rangle \geq \epsilon$.

Corollary 1. For every $0 < \epsilon < \sin^2(\pi/8)$, ϵ -low-energy states of $\frac{1}{n} \sum_{i=1}^{n} D |-i| < |i| D^{\dagger}$ require $\Omega(n)$ T gates to prepare.

Corollary 2. For the *D*-rotated NLTS family from [ABN22], all states of lowenough constant energy require $\Omega(n)$ T gates and $\Omega(\log n)$ depth to prepare.

Local Energy Bound

Consider a local term, $h = \frac{1}{2}(I - H^{\otimes k})$, and a state $|\psi\rangle$ with $S(|\psi\rangle) \equiv G$, prepared by $\leq cn$ T gates.

Step 1: If G "looks like" a full stabilizer group at h, then a local energy **bound holds!** $\langle \psi | h | \psi \rangle \ge \sin^2(\frac{\pi}{8})$

\implies No low-energy state of H can admit energy estimation in \mathcal{C} .

Types of States

Stabilizer group: $S(|\psi\rangle) \equiv \{P \in \mathcal{P}_n \mid P \mid \psi\rangle = |\psi\rangle\}$

Stabilizer state: prepared by only Clifford gates $\Leftrightarrow |S(|\psi\rangle)| = 2^n$

Size of $S(|\psi\rangle)$ vs. T-count: prepared by $\leq t$ T gates $\Rightarrow |S(|\psi\rangle)| \geq 2^{n-t}$

Almost-Clifford state: prepared by $\leq \log n$ T gates

States and Hamiltonians

State	Energy Estimation Algorithm	Hamiltonian Implication
Trivial (low- depth circuit)	NP via a light-cone argument	NLTS [ABN22]
"Sampleable"	MA via dequantizing QSVT [GL22]	NLSS [GL22] (open)
Stabilizer	NP via stabilizer generators	NLCS [CCNN23]
Almost- Clifford	NP via combo of light-cone + stabilizer generators	NLACS [this work]
•••	•••	•••

Locally-commuting at h: ignoring the Paulis outside of supp(h), all terms

I X Z YX I Z XX X Y I

Consider these four Pauli operators. The "local views" of every operator on qubits 1 and 2 mutually commute, even though the four operators mutually anti-commute.

Pseudo-stabilizer state at h: G has a subgroup, G_h, which is locally-commuting at h and has size 2^k . (Largest possible size)

I I I I A Pauli group which locally-commutes on I X I Yqubits 1 and 2, and X I Z Ihas maximal possible size $2^2 = 4$. X X Z Y

commute.

If G contains these four operators, then

 $\langle \psi | \frac{1}{2} (I^{\otimes 4} - H \otimes H \otimes I \otimes I) | \psi \rangle \ge \sin^2(\frac{\pi}{8})$

Global Energy Bound

Step 2: $|\psi\rangle$ is pseudo-stabilizer at $\Omega(n)$ local terms of $\frac{1}{m}\sum_{i=1}^{m_x}\frac{1}{2}(I-\mathrm{H}^{\otimes k})!$

T-count gives a lower bound on |G|, we give an upper bound which depends on the sizes of "locally-commuting" subgroups of G.

JOINT CENTER FOR QUANTUM INFORMATION AND COMPUTER SCIENCE

Lemma. There are subgroups of G, $\{G_i\}$, which (1) locally-commute at h_i , (2) are the largest subgroups of G with this property, and (3) satisfy $|G| \le \prod |G_i|$

Combined with the lower-bound, $|G| \ge 2^{(1-c)n}$, (3) implies that $\Omega(n)$ of the subgroups have size $|G_i| = 2^k$.

Future Directions

• Examine other Hamiltonian implications of QPCP:

 Improved hardness results for constant-gap LH: BQP-hardness, NL(T+C)S MA-hardness, ...

