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Abstract

“QPCP Hamiltonians”

States and Hamiltonians

Rotating CSS Hamiltonians

Local Energy Bound

Global Energy Bound

• The QMA-hardness of the Local Hamiltonian (LH) problem with 1/poly(n) 
gap implies that we cannot 1/poly(n)-approximate the ground-state energy of 
arbitrary local Hamiltonians in BQP, unless BQP=QMA.

• The Quantum PCP Conjecture (QPCP) asserts that the same is true even 
for a contant, Ω(1), relative promise gap. If true, QPCP implies the existence 
of Hamiltonians with interesting low-energy space properties.

• We exhibit one such prerequisite to QPCP: an explicit local Hamiltonian 
whose low-energy states all require ω(log n) T gates, i.e. they are very 
non-stabilizer. In fact, we show a stronger result that the low-energy states 
require Ω(n) T gates, which is not necessarily implied by QPCP.

• Applying our procedure to the NLTS family from [ABN22] yields an NLTS 
Hamiltonian whose low-energy states also require Ω(n) T gates.

Local Hamiltonian: 

Ground-state energy:

LH Problem: given H, ε>0, δ(n), decide between
  

If                                is conjectured, then for some constant δ>0 we cannot 
estimate        ± δ in   . 

       No low-energy state of H can admit energy estimation in   . 

Stabilizer group: 

Stabilizer state: prepared by only Clifford gates

Size of            vs. T-count:  prepared by ≤ t  T gates

Almost-Clifford state: prepared by ≤ log n  T gates

CSS Hamiltonian:

Ground-states of a CSS Hamiltonian are highly-stabilizer. 
Key idea: rotate to a basis which is far from stabilizer.

Single-qubit gates: H, Hadamard, and 

Rotated CSS Hamiltonian: 

Theorem. There are ε>0 and 0<c<1 s.t. if       can be prepared by ≤ cn T 
gates, then      has energy                    .

Corollary 1. For every 0<ε<sin2(π/8), ε-low-energy states of                                  
require Ω(n) T gates to prepare.

Corollary 2. For the D-rotated NLTS family from [ABN22], all states of low- 
enough constant energy require Ω(n) T gates and Ω(log n) depth to prepare.

Consider a local term,                          , and a state        with                   ,
prepared by ≤ cn T gates.

Step 1: If G “looks like” a full stabilizer group at h, then a local energy 
bound holds!

Locally-commuting at h: ignoring the Paulis outside of supp(h), all terms 
commute.

Pseudo-stabilizer state at h: G has a subgroup,      , which is locally-commuting 
at h and has size    . (Largest possible size)

Consider these four Pauli operators. 
The “local views” of every operator on 
qubits 1 and 2 mutually commute, even 
though the four operators mutually 
anti-commute.

A Pauli group which 
locally-commutes on 
qubits 1 and 2, and 
has maximal possible 
size 22=4.

If G contains these four operators, then

Step 2:       is pseudo-stabilizer at Ω(n) local terms of                               !

T-count gives a lower bound on |G|, we give an upper bound which depends 
on the sizes of “locally-commuting” subgroups of G.

Lemma. There are subgroups of G,        , which (1) locally-commute at     , (2) 
are the largest subgroups of G with this property, and (3) satisfy

Combined with the lower-bound,                     , (3) implies that Ω(n) of the 
subgroups have size               .

Future Directions
• Examine other Hamiltonian 
implications of QPCP:

•Improved hardness results for 
constant-gap LH: BQP-hardness, 
MA-hardness, ...

Types of States

State

Trivial (low- 
depth circuit)

“Sampleable”

Stabilizer

Almost- 
Clifford
...

Energy Estimation Algorithm

NP via a light-cone argument

MA via dequantizing QSVT [GL22]

NP via stabilizer generators

NP via combo of light-cone +   
stabilizer generators
...

Hamiltonian Implication

NLTS [ABN22]

NLSS [GL22] (open)

NLCS [CCNN23]

NLACS [this work]

...

(1)        ≤ ε (2)          ≥  ε + δ(n)

D-Rotated


