Local Hamiltonians with No Low-Energy Stabilizer States

Nolan J. Coble,

joint with Matthew Coudron, Jon Nelson, and Seyed Sajjad Nezhadi

JOINT CENTER FOR QUANTUM INFORMATION AND COMPUTER SCIENCE

k-local interaction term: $h_i \text{ PSD}$ with $||h_i|| \leq 1$

k-local interaction term: $h_i \text{ PSD}$ with $||h_i|| \leq 1$

k-local Hamiltonian: m = poly(n) k-local terms

$$H = \frac{1}{m} \sum_{i=1}^{m} h_i \otimes I_{2^{n-k}}$$

Ground-state energy: $E_{gs} = \min_{|\psi\rangle} \langle \psi | H | \psi \rangle$

Can we approximate E_{gs} to within some error $\delta(n)$ (in BQP)?

Local Hamiltonian Problem

Local Hamiltonian problem (LH): given H, $\epsilon > 0$, $\delta(n)$, decide between

For $\delta(n) = \frac{1}{\text{poly}(n)}$, LH is QMA-complete [KSV02].

(1) $E_{gs} \leq \epsilon$ or (2) $E_{gs} > \epsilon + \delta(n)$.

Can we approximate E_{gs} with constant precision?

Quantum PCP Conjecture (qPCP): LH is QMA-hard with $\delta(n) = \Omega(1)$.

By classical PCP Theorem LH- $\Omega(1)$ is at least NP-hard.

qPCP Conjecture

What does a "qPCP Hamiltonian" look like?

If $C \subsetneq \mathsf{QMA} = \mathsf{QPCP}$ is conjectured \Rightarrow cannot estimate $E_{gs} \pm \epsilon$ in C.

 \Rightarrow No ground state should have an energy estimation algorithm in C.

What do low-energy states look like?

If $C \subsetneq \mathsf{QMA} = \mathsf{QPCP}$ is conjectured \Rightarrow cannot estimate $E_{gs} \pm \epsilon$ in C. \Rightarrow No low-energy state should have an energy estimation algorithm in C. [Low-energy = small constant energy above E_{gs}] If qPCP Conjecture is true, $\exists H$ whose low-energy states cannot admit energy

approximation algorithms.

Some ways to estimate energy

- 1. Trivial (i.e. Low-depth circuit) states NP via light cone argument
- 2. "Sampleable states" MA via dequantizing QSVT [GL22]
- 3. Stabilizer states NP via stabilizer generators
- 4. Matrix product states NP via tensor contraction
- 5. ...

Some ways to estimate energy

- 1. Trivial (i.e. Low-depth circuit) states NP via light cone argument
- 2. "Sampleable states" MA via dequantizing QSVT [GL22] 3. Stabilizer states — NP via stabilizer generators
- 4. Matrix product states NP via tensor contraction
- 5. ...

A "qPCP" Hamiltonian can't have any of these in its low-energy space.

Low-energy space implications

Hamiltonians that should exist if qPCP is true...

- 1. No low-energy trivial states NLTS Theorem [ABN22]
- 2. No low-energy "sampleable states" NLSS Conjecture [GL22]
- 3. No low-energy stabilizer states NLCS Theorem (our work)

Note: Stabilizer states can be efficiently sampleable, so NLSS \Rightarrow NLCS.

No Low-Energy Stabilizer States (NLCS)

Stabilizer state \Leftrightarrow prepared by a Clifford circuit (H, CNOT, S)

Intuition: Ground-state energy can't be approximated using stabilizer states.

Theorem. There exists an explicit $\sin^2(\pi/8)$ -NLCS Hamiltonian.

H satisfies the ϵ -NLCS property if every stabilizer state has energy $\langle \psi | H | \psi \rangle \geq \epsilon$.*

Starting point: $H_0 \equiv \frac{1}{n} \sum |1\rangle \langle 1|_i$

Ground state: $|0^n\rangle$ with 0 energy

Main idea: rotate the ground-space into a basis which is highly non-stabilizer. We consider the Y version of the T gate: $D \equiv e^{i\frac{\pi}{8}Y}$

Rotated: $\tilde{H}_0 \equiv D^{\otimes n} H_0 D^{\dagger \otimes n} = \frac{1}{n} \sum D |1\rangle \langle 1|_i D^{\dagger}$

New ground state: $D^{\otimes n} | 0^n \rangle$ with 0 energy

Theorem. \tilde{H}_0 is $\sin^2(\pi/8)$ -NLCS.

Theorem. \tilde{H}_0 is $\sin^2(\pi/8)$ -NLCS.

Proof. Consider a single term:

Theorem. \tilde{H}_0 is $\sin^2(\pi/8)$ -NLCS.

Proof. Consider a single term:

Theorem. \tilde{H}_0 is $\sin^2(\pi/8)$ -NLCS.

Proof. Consider a single term:

Fact: If $|\psi\rangle$ is an *n*-qubit stabilizer state then $\psi_i \equiv \operatorname{Tr}_{-i}[|\psi\rangle\langle\psi|]$ is either $\frac{1}{2}I$ or a stabilizer state $|\eta\rangle\langle\eta|$.

Theorem. \tilde{H}_0 is $\sin^2(\pi/8)$ -NLCS.

Proof. Consider a single term:

So:

 $\langle \psi | D | 1 \rangle \langle 1 |_{i} D^{\dagger} | \psi \rangle = \frac{1}{2}$ or = $|\langle \eta | D | 1 \rangle|^{2}$

Theorem. \tilde{H}_0 is $\sin^2(\pi/8)$ -NLCS.

Proof.

Direct computation: $|\langle \eta | D | 1 \rangle|^2 \ge \sin^2(\pi/8)$ for all single-qubit stabilizer states.

Since all local terms are lower-bounded by $sin^2(\pi/8)$ we're done.

Combinations of types

Can we get a simultaneous NLTS and NLCS Hamiltonian?

Well... $H_{NLTS} \otimes I + I \otimes H_{NLCS}$, but this isn't a very interesting system.

H_{NLTS} is a CSS Hamiltonian, i.e. it's ground-space corresponds to a stabilizer code. Can we get NLTS+NLCS directly from rotating by $D = e^{i\frac{\pi}{8}Y}$?

CSS Hamiltonians

Theorem. For CSS Hamiltonians, $\tilde{H} \equiv D^{\otimes n} H D^{\dagger \otimes n}$ is $\sin^2(\pi/8)$ -NLCS.

Corollary. \tilde{H}_{NLTS} satisfies both NLTS and NLCS. Why? H_{NLTS} is a CSS Hamiltonian, and rotating by a constant-depth circuit preserves NLTS.

CSS Hamiltonians

Theorem. For CSS Hamiltonians, $\tilde{H} \equiv D^{\otimes n} H D^{\dagger \otimes n}$ is $\sin^2(\pi/8)$ -NLCS. Proof components: Let $|\psi\rangle$ be an *n*-qubit stabilizer state. (1) k-local states of $|\psi\rangle$ are mixtures of k-qubit stabilizer states \Rightarrow sufficient to bound local energy terms for k-qubit stabilizer states. (2) The local terms of \tilde{H} look like $\frac{I - H^{\otimes k}}{2}$ or $\frac{I - (-XHX)^{\otimes k}}{2}$ (H = Hadamard) \Rightarrow local lower bound follows from an upper bound on $|\langle \eta | H^{\otimes k} | \eta \rangle|$. (3) Main technical lemma: For all k-qubit stabilizer states $\Rightarrow |\langle \eta | H^{\otimes k} | \eta \rangle| \leq \frac{1}{\sqrt{2}}$.

Future Work

• We showed NLCS+NLTS Hamiltonians exist. What if we relax the stabilizer Clifford" States)

requirement to Clifford + a single T gate? log(n) T gates? (No Low-Energy "Almost

"Almost Clifford" states

Take H_0 to be the rotated zero Hamiltonian.

Conjecture. Suppose $|\psi\rangle$ can be prepared with $\leq \alpha T$ gates. Then

 $\langle \psi | \tilde{H}_0 | \psi \rangle \ge \left(1 - \frac{\alpha}{n} \right) \sin^2(\pi/8).$

"Almost Clifford" states

Take H_0 to be the rotated zero Hamiltonian.

NLACS Theorem (unpublished). Suppose $|\psi\rangle$ can be prepared with $\leq \alpha T$ gates. Then

 $\langle \psi | \tilde{H}_0 | \psi \rangle \ge$

Corollary. Low-energy states of \tilde{H}_0 require n - o(n) T gates.

 $\Rightarrow E_{gs}$ energy can't be approximated using stabilizer + $\log(n)$ T gate states

$$\left(1-\frac{\alpha}{n}\right)\sin^2(\pi/8).$$

Note: \tilde{H}_0 still has an NP witness

Future Work

- We showed NLCS Hamiltonians exist. What if we relax the stabilizer requirement to Clifford + a single T gate? log(n) T gates?
- NLSS Conjecture? Suggestion: CH_0C^{\dagger} for a low-depth circuit C.
- Witness state "lower-bounds", i.e. Hamiltonians with no low-energy:
 - 1. "stabilizer then low-depth" states (rotated stabilizer Hamiltonians have NP witnesses)
 - 2. states with classical descriptions that can be used to compute *k*-local reduced density matrices (NLLS Conjecture)
- Complexity lower-bounds for constant-gap LH problem (BQP-hardness, MA-hardness, etc.)

- We showed NLCS Hamiltonians exist. What if we relax the stabilizer requirement to Clifford + a single T gate? log(n) T gates?
- NLSS Conjecture? Suggestion: CH_0C^{\dagger} for a low-depth circuit C.
- Witness state "lower-bounds", i.e. Hamiltonians with no low-energy:
 - 1. "stabilizer then low-depth" states (rotated stabilizer Hamiltonians have NP witnesses)
 - 2. states with classical descriptions that can be used to compute *k*-local reduced density matrices (NLLS Conjecture)
- Complexity lower-bounds for constant-gap LH problem (BQP-hardness, MA-hardness, etc.)

Thanks!

Rotated zero Hamiltonian: $\tilde{H}_0 \equiv \frac{1}{n} \sum D |1\rangle \langle 1|_i D^{\dagger} \sim \frac{1}{n} \sum \frac{I - H_i}{2}$

Energy of a single term: $\frac{1}{2} \left(1 - \langle \psi | H_i | \psi \rangle \right)$

If $S \in \text{Stab}(|\psi\rangle)$ acts non-trivially on *i*, then $\langle \psi | H_i | \psi \rangle \leq \frac{1}{\sqrt{2}}$

If $|\psi\rangle$ can be prepared with αT gates, then $n - \alpha$ qubits are acted on non-trivially by a stabilizer.

