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e Quantum complexity basics




Local Hamiltonians
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Local Hamiltonians
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Can we approximate £,  to within some error ¢(n) (in BQP)?

k-local Hamiltonian: m = poly(n) k-local terms

— %; I @ Ly

Ground-state energy: E, = min (y|H|y)
)




Local Hamiltonian Problem

k-Local Hamiltonian problem (LH-€): given H, a, e(n) > 0, decide between

(DE, <a or (E,>a+eMn).

where E, = 11|1V}>11(1//\ H|y).

Computing E,, * €/2 = solution to LH-¢!




Complexity classes

A decision problem is in QMA (Quantum Merlin Arthur) it there is an efficient quantum
algorithm which can verity solutions to the problem using a quantum witness state.

1  w.h.pif the answer is yes

V(\X>®h/f>)={

0  w.h.p if the answer is no

lyw), poly(|x|) qubit state




Complexity classes

A decision problem is in MA (Merlin Arthur) if there is an efticient probabilistic
algorithm which can verity solutions to the problem using a classical witness state.

1  w.h.pif the answer is yes

V(x.y) ={ O

w.h.p if the answer is no

y, poly(|x|) length bit string




Complexity classes

A decision problem is in NP if there is an efficient deterministic algorithm which can
verity solutions to the problem using a classical witness state.

1 if the answer is yes

vxy) = O

if the answer is no

y, poly(|x|) length bit string




Complexity classes

Widely believed that QMA
NP and MA are not
equal to QMA!




Local Hamiltonian Problem

k-Local Hamiltonian problem (LH-€): given H, a, e(n) > 0, decide between

(DE, <a or (E,>a+eMn).

where E, = 11|1V}>11(1//\ H|y).

|
(Quantum Cook-Levin) For ¢(n) = , LH-€ is QMA-complete [KSV02].
poly(n)

Classically: MAX-k-SAT is NP-complete for e(n) =

poly(n)




PCP Theorem

Classically: MAX-k-SAT is NP-hard for e(n) = Q(1).




QPCP

Quantum PCP Conjecture (QPCP): LH-¢ is QMA-hard for e(n) = Q(1).

By classical PCP Theorem LH-€(1) is at least NP-hard.
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* Implications of QPCP




Implications on Hamiltonian Complexity

Assume QPCP is true with € > 0, constant Increasing energy

Let H be a “"QPCP Hamiltonian”.

Hard to approximate = interesting physics!

Lok e
Low-energy

space

E,. = min(y | H | y)
W)
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Energy estimation

Let C = NP or MA. An n-qubit state, | y), admits “energy estimation in C" if:

(1) |yw) has an efficient classical description, desc(|y)) € {0,1}P°P®,

(2) There is a C-verifier*, W, for which W(H, desc( | 1//))) —(w|H|y)| <e=0(1)

Only special types of quantum states admit classical energy estimation




Sampleable states

| ) is a sampleable state if:
(1) |yw) has an efficient classical description, desc(|y)) € {0,1}P°P®,
(2) There is a classical algorithm using desc(|y)) to compute amplitudes, (x|w).

(3) There is a classical algorithm using desc(|y)) to sample from p(x) = | (x| y) =

Energy estimation in MA via dequantization of QSVT [GL22]




Stabilizer (or Clitford) states

g =X V. 72F T = 9’?”, eg.,. XQRYQRIRZe X,
Stabilizer group: Stab(|y)) ={P € £, | P|ly) = |y)}

Stabilizer state: |Stab(|y))| = 2" (& prepared by a Clifford circuit)

By the Gottesman-Knill Theorem, stabilizer states are etficiently sampleable.

Energy estimation in NP via stabilizer generators




Almost-Clitfford states

g =X V. 72F T = 9’?”, eg.,. XQRYQRIRZe X,
Stabilizer group: Stab(|y)) ={P € £, | P|ly) = |y)}

Almost-Clifford state: |Stab(|y))| > 2"7'°¢" (& prepared by Clifford + O(logn) T gates)

By extensions of Gottesman-Knill, almost-Clifford states are efficiently sampleable

Energy estimation in NP via linear combination of stabilizer states




Low-energy space implications

Let H be a "QPCP Hamiltonian” and C a complexity class. Assuming C € QMA =

cannot estimate £, * € in C

= No low-energy state should have an energy estimation algorithm in C.

Why? Approximating energies of arbitrary low-energy states in C = LH-Q(1) € C




Low-energy space implications

Let 2 be a class of states with energy estimation in C.

QPCP + C € QMA = there is an H and constant € > 0

s.t. min (y|H|y) > E, +e.
(e

Such an H is said to satisfy the No Low-energy 2 States
(NLXZ'S) property.

No states € X

min (y|H|y)

(el

La €

E,, = min{y | H | y)
W)
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Low-energy space implications

Hamiltonians that should exist if QPCP is true...

1. No low-energy trivial states — NLTS Theorem [Anshu, Breuckmann, Nirkhe 22]

2.

3.

"sampleable states” — [Gharibian, Le Gall 22]
stabilizer states — NLCS Theorem [C, Coudron, Nelson, Nezhadi 23a]

almost-Clifford states — NLACS Theorem [CCNN23b]

locally-approximately states — NLLS Conjecture [CCNN23a, WFG23]




No Low-Energy Almost-Clitford States (NLACS)

H satisfies the ¢-NLACS property if every almost-Clifford state has energy

(Ww|H|y) > e*

Fact. Every NLSS Hamiltonian is an NLACS Hamiltonian.

*when E, =0




Can we construct such Hamiltonians
independently ot QPCP?




Main Results

Theorem. There exists an explicit local Hamiltonian satisfying a sin“(z/8)-NLACS
for every a € (0,1).

Theorem. There exists an explicit local Hamiltonian simultaneously satistying
NLACS and NLTS.

(In fact, low-energy states require n — o(1) T gates)
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» Simple NLACS Hamiltonian




Simple NLACS Hamiltonian

1
Starting point: H, = — = — I
g p == |

Ground state: | + )®" with 0 energy

Main idea: rotate the ground-space into a basis which is highly non-stabilizer.

¥

oS

We consider the Y version of the T gate: D = ¢!




Simple NLACS Hamiltonian

1
Rotated: H, = D®"H D"®" = — ZD\ — X —=|.D"
n

New ground state: D% 4 )®” with O energy

Ground state has no stabilizers: Stab(D®"| + )®") = {I}




Simple NLACS Hamiltonian

1 [ — H;
Rotated: H, = D®"H . D"®" = _ Z - H = Hadamard
n 2

New ground state: D% 4 )®” with O energy

Ground state has no stabilizers: Stab(D®"| + )®") = {I}




NLACS Theorem

Theorem [CCNN23b]. If |y) can be prepared by Clifford + < a T gates, then

(w|Hp|w) 2 (1 —%)Sinz<%)

Intuition: need a ~ n T gates to have arbitrary low energy.

Corollary. For every ¢ € (0,1), Hj, is ¢ sin*(7/8)-NLACS.




Local bound — single term

Ei:%(l—@//“"i\l/f))




Local bound — single term

EF%(I—(WHN/J))

Lemma. S € Stab(|y)) acts non-trivially on i = (w|H;|y) <

V2
= (¢

Fact 1. Stab(H; | w)) = H; Stab(|y)) H;

Fact 2. If |y) and | @) have anti-commuting stabilizers, then

Dol

[y le)| <

1
V2




Local bound — single term

Ei:l(1_<l//‘Hi‘l//>)

: S
Lemma. S € Stab(|y)) acts non-trivially on i = (y|H;|y) < : e
NG
Proof. —O—
Lty = (¢ By T )
—HHY




Local bound — single term

Ei:l(1_<l//‘Hi‘l//>)

3 S
Lemma. S € Stab(|y)) acts non-trivially on i = (y|H;|y) < i B
7z
Proof. -07
it S-=F e <?7b . . ?7b>




Local bound — single term

Ei:%(l_@/“'li‘lm)

1
Lemma. S € Stab(|y)) acts non-trivially on i = (y|H;|y) < \/5

Proof.

e F—
i




Local bound — single term

Ei:%(l_@/“'li‘lm)

Lemma. S € Stab(|y)) acts non-trivially on i = (y|H,;|y) <

V2
(W

Proof.

S
A
T
=




Local bound — single term

Ei:%<l_<l//“_|i‘l//>)

1
Lemma. S € Stab(|y)) acts non-trivially on i = (y|H,;|y) < \/_
2

Proof.

(Y

It S; = Z then|y) and H;|y) have anti-commuting stabilizers.

By Fact 2 the bound holds.

*
b, E5
0




Local bound — single term

E; = %(1 — (y| Hi\lﬂ)) = %(1 \/15) B sinz<%>

Lemma. S € Stab(|y)) acts non-trivially on i = (w|H;|y) <

V2
(W

How many terms are acted on non-trivially?

S
A
T
=




Global bound — how many terms?

Lemma. |y), prepared by < a T gates = > n — a qubits are acted on non-trivially.

Proof idea:

1. | Stab(|y)) | > 2"

2. If Stab(|y)) acted non-trivially on < n — a qubits = |Stab(|y))| < 2% = &




Global bound — how many terms?

Lemma. |y), prepared by < a T gates = > n — a qubits are acted on non-trivially.

= (w|Hp|y) > (n — a)sinz(g)

n
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e CSS Hamiltonians and joint NLTS/NLACS




Joint NLTS/NLACS

1. Trivial (i.e. Low-depth circuit) states — NP via light cone argument
2. “Sampleable states” — MA via dequantizing QSVT [GL22]
3. Stabilizer states — NP via stabilizer generators

4. Almost-Clifford States — NP via linear-combination of stabilizer states

Sk

A "QPCP Hamiltonian"” simultaneously can’t have any of these in its
low-energy space.




Joint NLTS/NLACS

1. No low-energy trivial states — NLTS Theorem [Anshu, Breuckmann, Nirkhe 22]

3 stabilizer states — NLCS Theorem [C, Coudron, Nelson, Nezhadi 23a]

4. almost-Clifford states — NLACS Theorem [CCNN23b]




Joint NLTS/NLACS

1. From CSS Hamiltonians — NLTS Theorem [Anshu, Breuckmann, Nirkhe 22]

3. Rotated CSS Hamiltonians — NLCS Theorem [C, Coudron, Nelson, Nezhadi 23a]

4. Rotated CSS Hamiltonians — NLACS Theorem [CCNN23b]




CSS Hamiltonians

H =

Z 2l S € {X, Z}, all terms commute.

A.

1
m
= l

|y) € ground space < {Sl.®k \Ai} C Stab(|y))

m = O(n) = ground-states are highly stabilized.

k= O(l) => ground space is a CSS QLDPC code




CSS Hamiltonians

Theorem [ABN22]. There an explicit family of QLDPC CSS Hamiltonians, H, which

has the NLTS property.




Can we rotate NLTS Hamiltonians so that they
become NLACS?




CSS Hamiltonians

Theorem [ABN22]. There an explicit family of QLDPC CSS Hamiltonians, H, which has
the NLTS property.

Theorem. If H is a QLDPC CSS Hamiltonian which satisfies NLTS, then H = D®"HD®"
simultaneously satistfies NLTS and NLACS.

(In fact, low-energy states require (n) T gates)




Rotating CSS = NLACS

Ss
Q

Proof components.

Step 0. Rotating a local Hamiltonian by
a constant-depth circuit preserves NLTS.
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Rotating CSS = NLACS

Q

H

Proof components.

Step 0. Rotating a local Hamiltonian by
a constant-depth circuit preserves NLTS.
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Local terms of H

< Fe oK
HO<D®”<Z : )D’f@)n

DHOND!

DHOND!
D!

DO
DO




Local terms of H

1
Local energy: E; = 5(1 = {ir | H®kAi | l/f>)

(Y

ulll

{@}=A




Rotating CSS = NLACS

Proof components.

|y), arbitrary state

1. A local condition of Stab(|y)) at A
implies an energy bound on the term.

2. Stab(|y)) satisfies this for @(m) terms
of H = D®"HD®" if it is sufficiently large.

Combined = H is NLACS

(Y

ulll

(@ =A




Rotating CSS = NLACS

Proof components.

|y), arbitrary state

1. A local condition of Stab(|y)) at A
implies an energy bound on the term.

(Y

ulll

(@ =A




Local bound — single term

Suppose S € Stab(|y)) acts non-trivially at A

(@ =A




Local bound — single term

Suppose S € Stab(|y)) acts non-trivially at A

If the overlap has an odd # of Y's:

(@ =A




Local bound — single term

Suppose S € Stab(|y)) acts non-trivially at A

If the overlap has an odd total # of X's and Z's

(Y

(@ =A




Suppose S € Stab(|y)) acts non-trivially at A

L

tof X's and Z's

If the overlap has an odd total ;

then |y) and (H®k)Ai|l//> have anti-commuting

stabilizers.

By Fact 2 the bound holds.

(Y

Local bound — single term

NS S
dulll

(@ =A



Local bound — single term

Suppose S € Stab(|y)) acts non-trivially at A

How to guarantee these happen?

ulll

(@ =A




Local views and locally-commuting sets

Local view of P at qubits 1 and 2:

PrnP)=PiQPQ I QI




Local views and locally-commuting sets

P~ e A

l

Local view of P at A C [n]: pA(P) = {
I itigA

Def. § C & is locally-commuting at A C [n] if p4(S) is a commuting group.
B X ]
B Y

N7 X
N 1 ]

e.g.




Pseudo-stabilizer property

Def. |y) is a pseudo-stabilizer state at A C [n] if there is a subset S C Stab(|y)) s.t.

1. § is locally-commuting at A

2. | p4(S) | = 211 (max possible size)




Local bound

Lemma. If |y) is pseudo-stabilizer at A, then p,(S) contains either:

1. A term with an odd # of Y's

|

2. A term with a total odd # of X's and Z's

I — H®*

Corollary. If |y) is pseudo-stabilizer at A, then (y/| 5

ly) > Sinz(




Global bound — how many terms?

Proof components.

|y), arbitrary state

2. Stab(|y)) satisfies this for @(m) terms How to guarantee this for an
of H = D®"HD'®" if it is sufficiently large. almost-Clifford state?




Global bound — how many terms?

Lemma. |y), prepared by < cn T gates for ¢ € (0,1) = |y) is pseudo-stabilizer at Q(n)
local terms of H = D®"HD®",

Proof idea.

1. [Sort of] Trivial: upper bound on T-count gives lower bound on size of Stab(|y)).

2. Upper bound on size of Stab(|y)) in terms of sizes of locally-commuting subsets

Thus, large stabilizer group = many large locally-commuting subsets




Local + global

: e 1= H®k <=0 4
Lemma. If |y) is pseudo-stabilizer at A = (y/| - | y) > sin = ¢
A

Lemma. |y), prepared by < cn T gates for ¢ € (0,1) = |y) is pseudo-stabilizer at €2(n)
local terms of H = D®*HD®",

Theorem. |y), prepared by < cn T gates for c € (0,1) = (y|H|y) = Q1)
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e Future directions




"State lower bounds” "Complexity lower bounds”

Quantum PCP Conjecture  New hardness results for LH-Q(1),

QCMA£QMA
/ BQP-hardness, MA-hardness, etc.
NLPS My NP£QMA NLSS

\}
NLCS of [WFC23]

NL(T+C)S NLACS Theorem NLMPS

ﬂ

NLTS Theorem NLCS Theorem

Ruling out classes of witnesses for LH-€2(1)




More directions

e Primitives for QPCP:

e Quantum locally-testable codes (QLTCs)

e Quantum PCPs of Proximity (QPCPPs) or QPCPs of weaker soundness/locality
e Variants of QPCP:

 QCPCP Conjecture [Weggemens, Folkertsma, Cade 23]

« QPCP Conjecture, i.e., perfect completeness (gap amplification for Clique
Homology?)




Recap

Energy estimation in NP/MA implies a special type of state

It QPCP is true and QMA#NP MA then these states can’t
be in the low-energy space of arbitrary local Hamiltonians.

min (y | H|y)
(WEX
NLTS, NLCS, NLACS verify that some of these are true B 4 ¢
y -
NLSS, NLLS are still open No states € &

E,, = min{y | H | y)
W)

8




Thanks!

Energy estimation in NP/MA implies a special type of state

It QPCP is true and QMA#NP MA then these states can’t
be in the low-energy space of arbitrary local Hamiltonians.

min (y | H|y)
(WEX
NLTS, NLCS, NLACS verify that some of these are true B 4 ¢
y -
NLSS, NLLS are still open No states € &

E,, = min{y | H | y)
W)

8










NLLS

NP energy estimation for trivial, stabilizer, almost-Clitfford share a similar theme.

A state is k-locally approximable if:
(1) |w) has an efficient classical description, desc(|y)) € {0,1}P°P®,

(2) There is an efficient classical algorithm, W, which computes all k-reduced states of |y),
i.e., for all A C, [n]

| W(A desc(|w) = Tr_yLlw)w|1| < e=0)




NLLS

NP energy estimation for trivial, stabilizer, almost-Clitfford share a similar theme.

| v), k-locally approximable = energy estimation in NP

No low-energy locally-approximately states — NLLS Conjecture [CCNN23a, WFG23]

Question. Does an NLLS Hamiltonian exist?




NLSS

1
Candidate Hamiltonian: CH,C" = — Z CT|1)(1 |.C where C is a family of Haar-
n

random, constant-depth circuits.

Ground state = C|0)%®".

Theorem [HE23]. C|0)®" is not sampleable unless the Polynomial Hierarchy collapses.

Question. Are low-enough energy states of CH,C" also not sampleable?




NLSS

Rotated QLTC Hamiltonian:

Let H be a QLTC Hamiltonian and C, Haar-random constant-depth circuit.

Question. Are ground states of CHC' not sampleable?

Question. If | @) is not sampleable and dist(|y), |@)) < en, is |yw) not sampleable?

Combined = rotated QLTC is an NLSS Hamiltonian




QLTCs

A QLDPC Hamiltonian, H, corresponds to a good quantum locally-testable code
(QLTC) if (w|H |w) > dist(|w), gs(H))/n.

Question. Do good QLTCs exist?

Fact [EH17]. If H corresponds to a QLTC then H is an NLTS Hamiltonian.







