Hamiltonians whose low-energy states require $\Omega(n)$ T gates

Joint work with Matthew Coudron, Jon Nelson, and Seyed Sajjad Nezhadi

JOINT CENTER FOR QUANTUM INFORMATION AND COMPUTER SCIENCE

Nolan J. Coble

Plausible complexity assumptions

QPCP Conjecture

(or possibly weaker conjectures)

Interesting physical systems

Plausible complexity assumptions

QPCP Conjecture

(or possibly weaker conjectures)

Interesting physical systems

- Quantum complexity basics
- Implications of QPCP
- Simple NLACS Hamiltonian
- CSS Hamiltonians and joint NLTS/NLACS
- Future directions

Outline

k-local interaction term: $h_i \text{ PSD}$ with $||h_i|| \leq 1$

k-local interaction term: $h_i \text{ PSD}$ with $||h_i|| \leq 1$

 $h_i \otimes I_{2^{n-k}}$

k-local interaction term: $h_i \text{ PSD}$ with $||h_i|| \leq 1$

k-local Hamiltonian: m = poly(n) k-local terms

$$H = \frac{1}{m} \sum_{i=1}^{m} h_i \otimes I_{2^{n-k}}$$

Ground-state energy: $E_{gs} \equiv \min \langle \psi | H | \psi \rangle$ $|\psi\rangle$

Can we approximate E_{gs} to within some error $\epsilon(n)$ (in BQP)?

Local Hamiltonian Problem

k-Local Hamiltonian problem (LH- ϵ): given *H*, *a*, $\epsilon(n) > 0$, decide between (1) $E_{gs} \le a$ or (2) $E_{gs} > a + \epsilon(n)$.

where $E_{gs} \equiv \min_{|\psi\rangle} \langle \psi | H | \psi \rangle$.

Computing $E_{gs} \pm \epsilon/2 \Rightarrow$ solution to LH- ϵ !

Complexity classes

 $V(|x\rangle \otimes |\psi\rangle) = \begin{cases} 1 & \text{w.h.p if the answer is yes} \\ 0 & \text{w.h.p if the answer is no} \end{cases}$

A decision problem is in QMA (Quantum Merlin Arthur) if there is an efficient quantum algorithm which can verify solutions to the problem using a quantum witness state.

 $|\psi\rangle$, poly(|x|) qubit state

Complexity classes

A decision problem is in MA (Merlin Arthur) if there is an efficient probabilistic

 $V(x, y) = \begin{cases} 1 & \text{w.h.p if the answer is yes} \\ 0 & \text{w.h.p if the answer is no} \end{cases}$

algorithm which can verify solutions to the problem using a classical witness state.

- y, poly(|x|) length bit string

Complexity classes

verify solutions to the problem using a classical witness state.

 $V(x, y) = \begin{cases} 1 & \text{if the answer is yes} \\ 0 & \text{if the answer is no} \end{cases}$

A decision problem is in NP if there is an efficient deterministic algorithm which can

y, poly(|x|) length bit string

Widely believed that NP and MA are not equal to QMA!

Local Hamiltonian Problem

k-Local Hamiltonian problem (LH- ϵ): given H, a, $\epsilon(n) > 0$, decide between (1) $E_{gs} \le a$ or (2) $E_{gs} > a + \epsilon(n)$.

where $E_{gs} \equiv \min_{|\psi\rangle} \langle \psi | H | \psi \rangle$.

(Quantum Cook–Levin) For $\epsilon(n) = \frac{1}{\operatorname{poly}(n)}$, LH- ϵ is QMA-complete [KSV02].

Classically: MAX-k-SAT is NP-complete f

for
$$\epsilon(n) = \frac{1}{\operatorname{poly}(n)}$$
.

k-Local Hamiltonian problem (LH- ϵ): given H, a, $\epsilon(n) > 0$, decide between (1) $E_{gs} \leq a$ or (2) $E_{gs} > a + \epsilon(n)$.

where $E_{gs} \equiv \min_{|\psi\rangle} \langle \psi | H | \psi \rangle$.

(Quantum Cook–Levin) For $\epsilon(n) = \frac{1}{\operatorname{poly}(n)}$, LH- ϵ is QMA-complete [KSV02].

Classically: MAX-k-SAT is NP-hard for $\epsilon(n) = \Omega(1)$.

PCP Theorem

Quantum PCP Conjecture (QPCP): LH- ϵ is QMA-hard for $\epsilon(n) = \Omega(1)$.

By classical PCP Theorem LH- $\Omega(1)$ is at least NP-hard.

QPCP

- Quantum complexity basics
- Implications of QPCP
- Simple NLACS Hamiltonian
- CSS Hamiltonians and joint NLTS/NLACS
- Future directions

Outline

Assume QPCP is true with $\epsilon > 0$, constant

Let *H* be a "QPCP Hamiltonian".

Energy estimation

Let C = NP or MA. An *n*-qubit state, $|\psi\rangle$, admits "energy estimation in C" if: (1) $|\psi\rangle$ has an efficient classical description, $desc(|\psi\rangle) \in \{0,1\}^{poly(n)}$. (2) There is a *C*-verifier*, *W*, for which $W(H, desc(|\psi\rangle)) - \langle \psi | H | \psi \rangle \le \epsilon = O(1)$

Only special types of quantum states admit classical energy estimation

Sampleable states

 $|\psi\rangle$ is a sampleable state if: (1) $|\psi\rangle$ has an efficient classical description, $desc(|\psi\rangle) \in \{0,1\}^{poly(n)}$. (2) There is a classical algorithm using $desc(|\psi\rangle)$ to compute amplitudes, $\langle x | \psi \rangle$. (3) There is a classical algorithm using $desc(|\psi\rangle)$ to sample from $p(x) = |\langle x | \psi \rangle|^2$.

Energy estimation in MA via dequantization of QSVT [GL22]

Stabilizer (or Clifford) states

 $\mathscr{P}_1 \equiv \{I, X, Y, Z\}, \ \mathscr{P}_n \equiv \mathscr{P}_1^{\otimes n}, \text{ e.g., } X \otimes Y \otimes I \otimes Z \in \mathscr{P}_4$ Stabilizer group: Stab $(|\psi\rangle) = \{P \in \mathcal{P}_n \mid P \mid \psi\rangle = |\psi\rangle\}$ Stabilizer state: $|\text{Stab}(|\psi\rangle)| = 2^n \iff \text{prepared by a Clifford circuit})$

By the Gottesman–Knill Theorem, stabilizer states are efficiently sampleable. **Energy estimation in NP via stabilizer generators**

Almost-Clifford states

 $\mathscr{P}_1 \equiv \{I, X, Y, Z\}, \ \mathscr{P}_n \equiv \mathscr{P}_1^{\otimes n}, \text{ e.g., } X \otimes Y \otimes I \otimes Z \in \mathscr{P}_4$ Stabilizer group: Stab $(|\psi\rangle) = \{P \in \mathcal{P}_n \mid P \mid \psi\rangle = |\psi\rangle\}$

Energy estimation in NP via linear combination of stabilizer states

- Almost-Clifford state: $|\text{Stab}(|\psi\rangle)| \ge 2^{n-\log n}$ (\Leftrightarrow prepared by Clifford + $O(\log n)$ T gates)

- By extensions of Gottesman-Knill, almost-Clifford states are efficiently sampleable

Low-energy space implications

Let *H* be a "QPCP Hamiltonian" and *C* a complexity class. Assuming $C \subsetneq QMA \Rightarrow$ cannot estimate $E_{gs} \pm \epsilon$ in C

 \Rightarrow No low-energy state should have an energy estimation algorithm in C.

Why? Approximating energies of arbitrary low-energy states in $C \Rightarrow LH-\Omega(1) \in C$

Low-energy space implications

Let \mathcal{X} be a class of states with energy estimation in C.

 $\begin{aligned} & \mathsf{QPCP} + C \subsetneq \mathsf{QMA} \Longrightarrow \text{there is an } H \text{ and constant } \epsilon > 0 \\ & \mathsf{s.t.} \ \min_{|\psi\rangle \in \mathcal{X}} \langle \psi | H | \psi \rangle \geq E_{gs} + \epsilon. \end{aligned}$

Such an H is said to satisfy the No Low-energy \mathcal{X} States (NL \mathcal{X} S) property.

 $\min_{|\psi\rangle\in\mathscr{X}} \langle \psi | H | \psi \rangle$

 $E_{gs} + \epsilon$

No states $\in \mathcal{X}$

 $E_{gs} \equiv \min_{|\psi\rangle} \langle \psi | H | \psi \rangle$

Low-energy space implications

Hamiltonians that should exist if QPCP is true...

. . .

- 1. No low-energy trivial states NLTS Theorem [Anshu, Breuckmann, Nirkhe 22]
- 2. _____ "sampleable states" NLSS Conjecture [Gharibian, Le Gall 22]
- 3. ______ stabilizer states NLCS Theorem [C, Coudron, Nelson, Nezhadi 23a]
- 4. _____ almost-Clifford states NLACS Theorem [CCNN23b]
- 5. _____ locally-approximately states NLLS Conjecture [CCNN23a, WFG23]

No Low-Energy Almost-Clifford States (NLACS)

H satisfies the ϵ -NLACS property if every almost-Clifford state has energy

Fact. Every NLSS Hamiltonian is an NLACS Hamiltonian.

 $\langle \psi | H | \psi \rangle \geq \epsilon.^*$

Can we construct such Hamiltonians independently of QPCP?

Theorem. There exists an explicit local Hamiltonian satisfying $\alpha \sin^2(\pi/8)$ -NLACS for every $\alpha \in (0,1)$.

Theorem. There exists an explicit local Hamiltonian simultaneously satisfying NLACS and NLTS.

(In fact, low-energy states require n - o(1) T gates)

Main Results

- Quantum complexity basics
- Implications of QPCP
- Simple NLACS Hamiltonian
- CSS Hamiltonians and joint NLTS/NLACS
- Future directions

Outline

Simple NLACS Hamiltonian

Starting point: $H_{+} \equiv \frac{1}{n} \sum_{i=1}^{n} |-\rangle \langle -|_{i}$

Ground state: $|+\rangle^{\otimes n}$ with 0 energy

Main idea: rotate the ground-space into a basis which is highly non-stabilizer. We consider the Y version of the T gate: $D \equiv e^{i\frac{\pi}{8}Y}$

Simple NLACS Hamiltonian

Rotated: $H_D \equiv D^{\otimes n} H_+ D^{\dagger \otimes n} = \frac{1}{n} \sum D |-$

New ground state: $D^{\otimes n} | + \rangle^{\otimes n}$ with 0 energy

Ground state has no stabilizers: $Stab(D^{\otimes n} | + \rangle^{\otimes n}) = \{I\}$

$$\langle - |_i D^{\dagger}$$

Simple NLACS Hamiltonian

Rotated: $H_D \equiv D^{\otimes n} H_+ D^{\dagger \otimes n} = \frac{1}{n} \sum \frac{I - H_i}{2}$, H = Hadamard

New ground state: $D^{\otimes n} | + \rangle^{\otimes n}$ with 0 energy

Ground state has no stabilizers: $Stab(D^{\otimes n} | + \rangle^{\otimes n}) = \{I\}$

NLACS Theorem

Theorem [CCNN23b]. If $|\psi\rangle$ can be prepared by Clifford + $\leq \alpha$ T gates, then

 $\langle \psi | H_D | \psi \rangle \geq$

Intuition: need $\alpha \sim n$ T gates to have arbitrary low energy.

Corollary. For every $c \in (0,1)$, H_D is $c \sin^2(\pi/8)$ -NLACS.

$$\geq \left(1 - \frac{\alpha}{n}\right) \sin^2\left(\frac{\pi}{8}\right)$$

Local bound — single term

 $E_i = \frac{1}{2} \left(1 - \langle \psi | \mathbf{H}_i | \psi \rangle \right)$

 $\langle \psi$

$$E_i = \frac{1}{2} \left(1 - \langle \psi | \mathsf{H}_i | \psi \rangle \right)$$

Fact 1. $Stab(H_i | \psi \rangle) = H_i Stab(| \psi \rangle) H_i$

Fact 2. If $|\psi\rangle$ and $|\phi\rangle$ have anti-commuting stabilizers, then $|\langle \psi | \varphi \rangle| \le \frac{1}{\sqrt{2}}$

Lemma. $S \in \text{Stab}(|\psi\rangle)$ acts non-trivially on $i \Rightarrow \langle \psi | H_i | \psi \rangle \leq \frac{1}{\sqrt{2}}$

 $=\langle \chi$

$$E_i = \frac{1}{2} \left(1 - \langle \psi | H_i | \psi \rangle \right)$$

Proof.

If
$$S_i = Y$$

Lemma. $S \in \text{Stab}(|\psi\rangle)$ acts non-trivially on $i \Rightarrow \langle \psi | H_i | \psi \rangle \leq \frac{1}{\sqrt{2}}$

 $=\langle\psi$

C

$$E_i = \frac{1}{2} \left(1 - \langle \psi | H_i | \psi \rangle \right)$$

Proof.

If
$$S_i = Y$$

Local bound — single term

$$E_i = \frac{1}{2} \left(1 - \langle \psi | H_i | \psi \rangle \right)$$

Proof.

If
$$S_i = Y$$

Lemma. $S \in \text{Stab}(|\psi\rangle)$ acts non-trivially on $i \Rightarrow \langle \psi | H_i | \psi \rangle \leq \frac{1}{\sqrt{2}}$

 $= - \langle \psi$

_

$$E_i = \frac{1}{2} \left(1 - \langle \psi | H_i | \psi \rangle \right)$$

Proof.

If $S_i = Z$

Lemma. $S \in \text{Stab}(|\psi\rangle)$ acts non-trivially on $i \Rightarrow \langle \psi | H_i | \psi \rangle \leq \frac{1}{\sqrt{2}}$

 $\langle \psi$

C

Local bound — single term

$$E_i = \frac{1}{2} \left(1 - \langle \psi | H_i | \psi \rangle \right)$$

Proof.

If $S_i = Z$ then $|\psi\rangle$ and $H_i |\psi\rangle$ have anti-commuting stabilizers. By Fact 2 the bound holds.

Lemma. $S \in \text{Stab}(|\psi\rangle)$ acts non-trivially on $i \Rightarrow \langle \psi | H_i | \psi \rangle \leq \frac{1}{\sqrt{2}}$

 $\langle \psi$

$$E_i = \frac{1}{2} \left(1 - \langle \psi | \mathsf{H}_i | \psi \rangle \right) \ge \frac{1}{2} \left(1 - \frac{1}{\sqrt{2}} \right) = \mathrm{si}$$

How many terms are acted on non-trivially?

Local bound — single term $in^2\left(\frac{\pi}{8}\right)$ **Lemma.** $S \in \text{Stab}(|\psi\rangle)$ acts non-trivially on $i \Rightarrow \langle \psi | H_i | \psi \rangle \leq \frac{1}{\sqrt{2}}$ $\langle \psi$

Lemma. $|\psi\rangle$, prepared by $\leq \alpha$ T gates $\Rightarrow \geq n - \alpha$ qubits are acted on non-trivially.

Proof idea:

1. $|Stab(|\psi\rangle)| \ge 2^{n-\alpha}$

2. If $Stab(|\psi\rangle)$ acted non-trivially on $< n - \alpha$ qubits $\Rightarrow |Stab(|\psi\rangle)| < 2^{n-\alpha}$. $\Rightarrow \in$

Global bound — how many terms?

$$\Rightarrow \langle \psi | H_D | \psi \rangle \ge \left(\frac{n-\alpha}{n}\right) \sin^2\left(\frac{\pi}{8}\right)$$

Global bound — how many terms?

Lemma. $|\psi\rangle$, prepared by $\leq \alpha$ T gates $\Rightarrow \geq n - \alpha$ qubits are acted on non-trivially.

- Quantum complexity basics
- Implications of QPCP
- Simple NLACS Hamiltonian
- CSS Hamiltonians and joint NLTS/NLACS
- Future directions

Outline

- 1. Trivial (i.e. Low-depth circuit) states NP via light cone argument
- 2. "Sampleable states" MA via dequantizing QSVT [GL22] 3. Stabilizer states — NP via stabilizer generators 4. Almost-Clifford States — NP via linear-combination of stabilizer states
- 5. ...

A "QPCP Hamiltonian" *simultaneously* can't have any of these in its low-energy space.

Joint NLTS/NLACS

Joint NLTS/NLACS

1. No low-energy	trivial states — NLTS T
2.	"sampleable states" —
3.	stabilizer states — NLC
4.	almost-Clifford states -
5.	locally-approximately s

- heorem [Anshu, Breuckmann, Nirkhe 22]
- NLSS Conjecture [Gharibian, Le Gall 22]
- CS Theorem [C, Coudron, Nelson, Nezhadi 23a]
- NLACS Theorem [CCNN23b]
- tates NLLS Conjecture [CCNN23a, WFG??]

Joint NLTS/NLACS

- NLTS Theorem [Anshu, Breuckmann, Nirkhe 22]

 - NLCS Theorem [C, Coudron, Nelson, Nezhadi 23a]
 - NLACS Theorem [CCNN23b]
- 5. <u>locally-approximately states NLLS Conjecture [CCNN23a, WFG??]</u>

CSS Hamiltonians

$$H = \frac{1}{m} \sum_{i=1}^{m} \frac{I - S_i^{\otimes k}}{2} \Big|_{A_i}, S_i \in \{X, Z\}, \text{ all terr}$$

 $|\psi\rangle \in \text{ground space} \Leftrightarrow \{S_i^{\otimes k}|_{A_i}\} \subseteq \text{Stab}(|\psi\rangle)$

 $m = \Theta(n) \Rightarrow$ ground-states are highly stabilized.

 $k = O(1) \Rightarrow$ ground space is a CSS QLDPC code

ms commute.

CSS Hamiltonians

Theorem [ABN22]. There an explicit fam has the NLTS property.

Theorem [ABN22]. There an explicit family of QLDPC CSS Hamiltonians, H, which

Can we rotate NLTS Hamiltonians so that they

become NLACS?

CSS Hamiltonians

Theorem [ABN22]. There an explicit fam the NLTS property.

Theorem. If *H* is a QLDPC CSS Hamiltonian which satisfies NLTS, then $\tilde{H} \equiv D^{\otimes n}HD^{\dagger \otimes n}$ simultaneously satisfies NLTS and NLACS.

(In fact, low-energy states require $\Omega(n)$ T gates)

Theorem [ABN22]. There an explicit family of QLDPC CSS Hamiltonians, H, which has

Proof components.

Step 0. Rotating a local Hamiltonian by a constant-depth circuit preserves NLTS.

2/)

Proof components.

Step 0. Rotating a local Hamiltonian by a constant-depth circuit preserves NLTS.

 $\sqrt{\psi}$

 $\tilde{H} \propto D^{\otimes n} \left(\sum_{i} \frac{I - X^{\otimes k}}{2} \bigg|_{A_{i}} \right) D^{\dagger \otimes n}$

Local terms of \tilde{H}

$$\tilde{H} \propto \sum_{i} \frac{I - H^{\otimes k}}{2} \bigg|_{A_i}$$

Local energy: $E_i = \frac{1}{2} \left(1 - \langle \psi | \mathbf{H}^{\otimes k}_{A_i} | \psi \rangle \right)$

Proof components.

 $|\psi\rangle$, arbitrary state

1. A local condition of $Stab(|\psi\rangle)$ at A implies an energy bound on the term.

2. Stab($|\psi\rangle$) satisfies this for $\Theta(m)$ terms of $\tilde{H} \equiv D^{\otimes n} H D^{\dagger \otimes n}$ if it is sufficiently large.

Combined $\Rightarrow \tilde{H}$ is NLACS

Proof components.

 $|\psi\rangle$, arbitrary state

1. A local condition of $Stab(|\psi\rangle)$ at A implies an energy bound on the term.

2. Stab($|\psi\rangle$) satisfies this for $\Theta(m)$ terms of $\tilde{H} \equiv D^{\otimes n} HD^{\dagger \otimes n}$ if it is sufficiently large.

Combined $\Rightarrow \tilde{H}$ is NLACS

 $\{ \bullet \} = A$

If the overlap has an odd # of Y's:

 $\{ \bullet \} = A$

If the overlap has an odd total # of X's and Z's

If the overlap has an odd total # of X's and Z's then $|\psi\rangle$ and $(H^{\otimes k})_{A_i} |\psi\rangle$ have anti-commuting stabilizers.

By Fact 2 the bound holds.

Local bound — single term N $\{ \bullet \} = A$

How to guarantee these happen?

Local views and locally-commuting sets

 $P = P_1 \otimes P_2 \otimes P_3 \otimes \cdots \otimes P_n$

Local view of P at qubits 1 and 2:

 $\rho_{\{1,2\}}(P) = P_1 \otimes P_2 \otimes I \otimes \cdots \otimes I$

Local views and locally-commuting sets

Local view of P at $A \subseteq [n]$:

Def. $S \subseteq \mathcal{P}_n$ is **locally-commuting** at $A \subseteq [n]$ if $\rho_A(S)$ is a commuting group.

e.g.

$\rho_A(P) = \begin{cases} P_i & \text{if } i \in A \\ I & \text{if } i \notin A \end{cases}$

 $\begin{bmatrix} I & I \\ I & X \end{bmatrix} X \begin{bmatrix} I \\ Z \end{bmatrix} Y$ X I Z X

Pseudo-stabilizer property

1. S is locally-commuting at A

2. $|\rho_A(S)| = 2^{|A|}$ (max possible size)

Def. $|\psi\rangle$ is a pseudo-stabilizer state at $A \subseteq [n]$ if there is a subset $S \subseteq Stab(|\psi\rangle)$ s.t.

Lemma. If $|\psi\rangle$ is pseudo-stabilizer at A, then $\rho_A(S)$ contains either:

1. A term with an odd # of Y's

2. A term with a total odd # of X's and Z's

Corollary. If $|\psi\rangle$ is pseudo-stabilizer at *A*, then $\langle \psi | \frac{I - H^{\otimes k}}{2} |_A |\psi\rangle \ge \sin^2\left(\frac{\pi}{8}\right)$.

Local bound

Proof components.

 $|\psi\rangle$, arbitrary state

1. If $|\psi\rangle$ is pseudo-stabilizer at A, then there is a local energy lower bound.

2. Stab($|\psi\rangle$) satisfies this for $\Theta(m)$ terms of $\tilde{H} \equiv D^{\otimes n} H D^{\dagger \otimes n}$ if it is sufficiently large.

Combined $\Rightarrow \tilde{H}$ is NLACS

Global bound — how many terms?

How to guarantee this for an almost-Clifford state?

Lemma. $|\psi\rangle$, prepared by $\leq cn$ T gates for $c \in (0,1) \Rightarrow |\psi\rangle$ is pseudo-stabilizer at $\Omega(n)$ local terms of $\tilde{H} \equiv D^{\otimes n} H D^{\dagger \otimes n}$.

Proof idea.

1. [Sort of] Trivial: upper bound on T-count gives lower bound on size of $Stab(|\psi\rangle)$.

2. Upper bound on size of $Stab(|\psi\rangle)$ in terms of sizes of locally-commuting subsets

Thus, large stabilizer group \Rightarrow many large locally-commuting subsets

Global bound — how many terms?

Lemma. If $|\psi\rangle$ is pseudo-stabilizer at A =

local terms of $\tilde{H} \equiv D^{\otimes n} H D^{\dagger \otimes n}$.

Theorem. $|\psi\rangle$, prepared by $\leq cn$ T gates for $c \in (0,1) \Rightarrow \langle \psi | \tilde{H} | \psi \rangle = \Omega(1)$

Local + global

$$\Rightarrow \langle \psi | \frac{I - H^{\otimes k}}{2} \Big|_{A} | \psi \rangle \ge \sin^{2} \left(\frac{\pi}{8} \right).$$

Lemma. $|\psi\rangle$, prepared by $\leq cn$ T gates for $c \in (0,1) \Rightarrow |\psi\rangle$ is pseudo-stabilizer at $\Omega(n)$

- Quantum complexity basics
- Implications of QPCP
- Simple NLACS Hamiltonian
- CSS Hamiltonians and joint NLTS/NLACS
- Future directions

Outline

"State lower bounds"

Ruling out classes of witnesses for LH- $\Omega(1)$

"Complexity lower bounds"

• New hardness results for LH- $\Omega(1)$, BQP-hardness, MA-hardness, etc.

NLMPS

- Primitives for QPCP:
 - Quantum locally-testable codes (QLTCs)
- Variants of QPCP:
 - OCPCP Conjecture [Weggemens, Folkertsma, Cade 23]
 - QPCP₁ Conjecture, i.e., perfect completeness (gap amplification for Clique) Homology?)

More directions

Quantum PCPs of Proximity (QPCPPs) or QPCPs of weaker soundness/locality

Energy estimation in NP/MA implies a special type of state

If QPCP is true and QMA = NP, MA then these states can't be in the low-energy space of arbitrary local Hamiltonians.

NLTS, NLCS, NLACS verify that some of these are true NLSS, NLLS are still open

Recap

 $\min_{|\psi\rangle\in\mathscr{X}} \langle \psi | H | \psi \rangle$

$$E_{gs} + \epsilon$$

No states $\in \mathcal{X}$

 $E_{gs} \equiv \min_{|\psi\rangle} \langle \psi | H | \psi \rangle$

Energy estimation in NP/MA implies a special type of state

If QPCP is true and QMA = NP, MA then these states can't be in the low-energy space of arbitrary local Hamiltonians.

NLTS, NLCS, NLACS verify that some of these are true NLSS, NLLS are still open

Thanks!

 $\min_{|\psi\rangle\in\mathscr{X}} \langle \psi | H | \psi \rangle$

$$E_{gs} + \epsilon$$

No states $\in \mathcal{X}$

 $E_{gs} \equiv \min_{|\psi\rangle} \langle \psi | H | \psi \rangle$

-												
									2.95			
									1.83			

-												
									2.95			
									1.83			

NP energy estimation for trivial, stabilizer, almost-Clifford share a similar theme.

A state is *k*-locally approximable if:

(1) $|\psi\rangle$ has an efficient classical description, $desc(|\psi\rangle) \in \{0,1\}^{poly(n)}$.

(2) There is an efficient classical algorithm, W, which computes all k-reduced states of $|\psi\rangle$, i.e., for all $A \subseteq_k [n]$

NLLS

 $|W(A, desc(|\psi\rangle)) - Tr_{-A}[|\psi\rangle\langle\psi|]| \le \epsilon = O(1)$

 $|\psi\rangle$, k-locally approximable \Rightarrow energy estimation in NP

No low-energy locally-approximately states — NLLS Conjecture [CCNN23a, WFG23] **Question**. Does an NLLS Hamiltonian exist?

NLLS

NP energy estimation for trivial, stabilizer, almost-Clifford share a similar theme.

Candidate Hamiltonian: $CH_0C^{\dagger} \equiv \frac{1}{n}\sum C^{\dagger}|1\rangle\langle 1|_iC$ where C is a family of Haar-random, constant-depth circuits.

Ground state = $C |0\rangle^{\otimes n}$.

Theorem [HE23]. $C|0\rangle^{\otimes n}$ is not sampleable unless the Polynomial Hierarchy collapses.

Question. Are low-enough energy states of CH_0C^{\dagger} also not sampleable?

NLSS

Rotated QLTC Hamiltonian:

Let *H* be a QLTC Hamiltonian and *C*, Haar-random constant-depth circuit.

Question. Are ground states of CHC^{\dagger} not sampleable? **Question.** If $|\varphi\rangle$ is not sampleable and $dist(|\psi\rangle, |\varphi\rangle) \leq \epsilon n$, is $|\psi\rangle$ not sampleable?

Combined ⇒ rotated QLTC is an NLSS Hamiltonian

NLSS

A QLDPC Hamiltonian, H, corresponds to a good quantum locally-testable code (QLTC) if $\langle \psi | H | \psi \rangle \ge dist(|\psi\rangle, gs(H))/n$.

Question. Do good QLTCs exist?

Fact [EH17]. If H corresponds to a QLTC then H is an NLTS Hamiltonian.

QLTCs

-												
									2.95			
									1.83			

