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-local interaction term:  PSD with  

-local Hamiltonian:  -local terms 

 

Ground-state energy:  

Can we approximate  to within some error  (in BQP)?

k hi ∥hi∥ ≤ 1

k m = poly(n) k

H =
1
m

m

∑
i=1

hi ⊗ I2n−k

Egs ≡ min
|ψ⟩

⟨ψ |H |ψ⟩

Egs ϵ(n)

Local Hamiltonians
hi

hj hk



Local Hamiltonian Problem

-Local Hamiltonian problem (LH- ): given , , , decide between 

where . 

Computing solution to LH- !

k ϵ H a ϵ(n) > 0

Egs ≡ min
|ψ⟩

⟨ψ |H |ψ⟩

Egs ± ϵ/2 ⇒ ϵ

(1) Egs ≤ a or (2) Egs > a + ϵ(n) .



Complexity classes

A decision problem is in QMA (Quantum Merlin Arthur) if there is an efficient quantum 
algorithm which can verify solutions to the problem using a quantum witness state.

V( |x⟩ ⊗ |ψ⟩) = {
1

0

w.h.p if the answer is yes

w.h.p if the answer is no

,   qubit state|ψ⟩ poly( |x | )



Complexity classes

A decision problem is in MA (Merlin Arthur) if there is an efficient probabilistic 
algorithm which can verify solutions to the problem using a classical witness state.
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Complexity classes

A decision problem is in NP if there is an efficient deterministic algorithm which can 
verify solutions to the problem using a classical witness state.

V(x, y) = {
1

0

if the answer is yes

if the answer is no

,   length bit stringy poly( |x | )



Complexity classes

NP

MA

QMAWidely believed that 
NP and MA are not 
equal to QMA!



Local Hamiltonian Problem

k-Local Hamiltonian problem (LH- ): given , , , decide between 

where . 

(Quantum Cook–Levin) For , LH-  is QMA-complete [KSV02]. 

ϵ H a ϵ(n) > 0

Egs ≡ min
|ψ⟩

⟨ψ |H |ψ⟩

ϵ(n) =
1

poly(n)
ϵ

(1) Egs ≤ a or (2) Egs > a + ϵ(n) .

Classically: MAX-k-SAT is NP-complete for .ϵ(n) =
1

poly(n)



PCP Theorem

k-Local Hamiltonian problem (LH- ): given , , , decide between 

where . 

(Quantum Cook–Levin) For , LH-  is QMA-complete [KSV02]. 

Classically: MAX-k-SAT is NP-hard for .

ϵ H a ϵ(n) > 0

Egs ≡ min
|ψ⟩

⟨ψ |H |ψ⟩

ϵ(n) =
1

poly(n)
ϵ

ϵ(n) = Ω(1)

(1) Egs ≤ a or (2) Egs > a + ϵ(n) .



QPCP

Quantum PCP Conjecture (QPCP): LH-  is QMA-hard for . 

By classical PCP Theorem LH-  is at least NP-hard.

ϵ ϵ(n) = Ω(1)

Ω(1)
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Implications on Hamiltonian Complexity

Assume QPCP is true with , constant 

Let  be a “QPCP Hamiltonian”.

ϵ > 0

H

Egs ≡ min
|ψ⟩

⟨ψ |H |ψ⟩

Egs + ϵ

Increasing energy

Hard to approximate  interesting physics!⇒

Low-energy 
space



Energy estimation

Let NP or MA. An -qubit state, , admits “energy estimation in ” if: 

(1)  has an efficient classical description, . 

(2) There is a -verifier*, , for which  

Only special types of quantum states admit classical energy estimation

C = n |ψ⟩ C

|ψ⟩ desc( |ψ⟩) ∈ {0,1}poly(n)

C W W(H, desc( |ψ⟩)) − ⟨ψ |H |ψ⟩ ≤ ϵ = O(1)



Sampleable states

 is a sampleable state if: 

(1)  has an efficient classical description, . 

(2) There is a classical algorithm using  to compute amplitudes, . 

(3) There is a classical algorithm using  to sample from . 

Energy estimation in MA via dequantization of QSVT [GL22]

|ψ⟩

|ψ⟩ desc( |ψ⟩) ∈ {0,1}poly(n)

desc( |ψ⟩) ⟨x |ψ⟩

desc( |ψ⟩) p(x) = |⟨x |ψ⟩ |2



Stabilizer (or Clifford) states

,  , e.g.,  

Stabilizer group:  

Stabilizer state:  (  prepared by a Clifford circuit) 

By the Gottesman–Knill Theorem, stabilizer states are efficiently sampleable. 

Energy estimation in NP via stabilizer generators

𝒫1 ≡ {I, X, Y, Z} 𝒫n ≡ 𝒫⊗n
1 X ⊗ Y ⊗ I ⊗ Z ∈ 𝒫4

Stab( |ψ⟩) = {P ∈ 𝒫n ∣ P |ψ⟩ = |ψ⟩}

|Stab( |ψ⟩) | = 2n ⇔



Almost-Clifford states

,  , e.g.,  

Stabilizer group:  

Almost-Clifford state:  (  prepared by Clifford +  T gates) 

By extensions of Gottesman-Knill, almost-Clifford states are efficiently sampleable 

Energy estimation in NP via linear combination of stabilizer states

𝒫1 ≡ {I, X, Y, Z} 𝒫n ≡ 𝒫⊗n
1 X ⊗ Y ⊗ I ⊗ Z ∈ 𝒫4

Stab( |ψ⟩) = {P ∈ 𝒫n ∣ P |ψ⟩ = |ψ⟩}

|Stab( |ψ⟩) | ≥ 2n−log n ⇔ O(log n)



Low-energy space implications

Let  be a “QPCP Hamiltonian” and  a complexity class. Assuming   QMA  
cannot estimate  in  

 No low-energy state should have an energy estimation algorithm in . 

Why? Approximating energies of arbitrary low-energy states in LH-

H C C ⊊ ⇒
Egs ± ϵ C

⇒ C

C ⇒ Ω(1) ∈ C



Low-energy space implications

Let  be a class of states with energy estimation in . 

QPCP + QMA  there is an  and constant  
s.t. . 

Such an  is said to satisfy the No Low-energy  States 
(NL S) property.

𝒳 C

C ⊊ ⟹ H ϵ > 0
min

|ψ⟩∈𝒳
⟨ψ |H |ψ⟩ ≥ Egs + ϵ

H 𝒳
𝒳

Egs ≡ min
|ψ⟩

⟨ψ |H |ψ⟩

Egs + ϵ

min
|ψ⟩∈𝒳

⟨ψ |H |ψ⟩

No states ∈ 𝒳



Low-energy space implications

1. No low-energy trivial states — NLTS Theorem [Anshu, Breuckmann, Nirkhe 22] 

2. _____________ “sampleable states” — NLSS Conjecture [Gharibian, Le Gall 22] 

3. _____________ stabilizer states — NLCS Theorem [C, Coudron, Nelson, Nezhadi 23a] 

4. _____________ almost-Clifford states — NLACS Theorem [CCNN23b] 

5. _____________ locally-approximately states — NLLS Conjecture [CCNN23a, WFG23] 

…

Hamiltonians that should exist if QPCP is true…



No Low-Energy Almost-Clifford States (NLACS)

 satisfies the -NLACS property if every almost-Clifford state has energy 

Fact. Every NLSS Hamiltonian is an NLACS Hamiltonian.

H ϵ

* when Egs = 0

.*⟨ψ |H |ψ⟩ ≥ ϵ



Can we construct such Hamiltonians 
independently of QPCP?



Main Results

Theorem. There exists an explicit local Hamiltonian satisfying -NLACS 
for every . 

Theorem. There exists an explicit local Hamiltonian simultaneously satisfying 
NLACS and NLTS. 

(In fact, low-energy states require  T gates)

α sin2(π/8)
α ∈ (0,1)

n − o(1)
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Simple NLACS Hamiltonian

Starting point:  

Ground state:  with 0 energy 

Main idea: rotate the ground-space into a basis which is highly non-stabilizer. 

We consider the  version of the T gate: 

H+ ≡
1
n ∑ | − ⟩⟨ − |i

| + ⟩⊗n

Y D ≡ ei π
8 Y



Simple NLACS Hamiltonian

Rotated:  

New ground state:  with 0 energy 

Ground state has no stabilizers: 

HD ≡ D⊗nH+D†⊗n =
1
n ∑ D | − ⟩⟨ − |i D

†

D⊗n | + ⟩⊗n

Stab(D⊗n | + ⟩⊗n) = {I}



Simple NLACS Hamiltonian

Rotated: , Hadamard 

New ground state:  with 0 energy 

Ground state has no stabilizers: 

HD ≡ D⊗nH+D†⊗n =
1
n ∑

I − Hi

2
H =

D⊗n | + ⟩⊗n

Stab(D⊗n | + ⟩⊗n) = {I}



NLACS Theorem

Theorem [CCNN23b]. If  can be prepared by Clifford +  T gates, then 

Intuition: need  T gates to have arbitrary low energy. 

Corollary. For every ,  is -NLACS.

|ψ⟩ ≤ α

α ∼ n

c ∈ (0,1) HD c sin2(π/8)

⟨ψ |HD |ψ⟩ ≥ (1 −
α
n )sin2( π

8 )



Local bound — single term

Ei =
1
2 (1 − ⟨ψ |Hi |ψ⟩)



Local bound — single term

 

Lemma.  acts non-trivially on  

Fact 1.  

Fact 2. If  and  have anti-commuting stabilizers, then

Ei =
1
2 (1 − ⟨ψ |Hi |ψ⟩)

S ∈ Stab( |ψ⟩) i ⇒ ⟨ψ |Hi |ψ⟩ ≤
1

2

Stab(Hi |ψ⟩) = Hi Stab( |ψ⟩) Hi

|ψ⟩ |φ⟩

S

|⟨ψ |φ⟩ | ≤
1

2

——



Local bound — single term

 

Lemma.  acts non-trivially on  

Proof. 

If 

Ei =
1
2 (1 − ⟨ψ |Hi |ψ⟩)

S ∈ Stab( |ψ⟩) i ⇒ ⟨ψ |Hi |ψ⟩ ≤
1

2

Si = Y

S

——



Local bound — single term

 

Lemma.  acts non-trivially on  

Proof. 

If 

Ei =
1
2 (1 − ⟨ψ |Hi |ψ⟩)

S ∈ Stab( |ψ⟩) i ⇒ ⟨ψ |Hi |ψ⟩ ≤
1

2

Si = Y

S

———



Local bound — single term

 

Lemma.  acts non-trivially on  

Proof. 

If 

Ei =
1
2 (1 − ⟨ψ |Hi |ψ⟩)

S ∈ Stab( |ψ⟩) i ⇒ ⟨ψ |Hi |ψ⟩ ≤
1

2

Si = Y
———

—— 0



Local bound — single term

 

Lemma.  acts non-trivially on  

Proof. 

If 

Ei =
1
2 (1 − ⟨ψ |Hi |ψ⟩)

S ∈ Stab( |ψ⟩) i ⇒ ⟨ψ |Hi |ψ⟩ ≤
1

2

Si = Z

S



Local bound — single term

 

Lemma.  acts non-trivially on  

Proof. 

If  then  and  have anti-commuting stabilizers.  

By Fact 2 the bound holds.

Ei =
1
2 (1 − ⟨ψ |Hi |ψ⟩)

S ∈ Stab( |ψ⟩) i ⇒ ⟨ψ |Hi |ψ⟩ ≤
1

2

Si = Z |ψ⟩ Hi |ψ⟩



Local bound — single term

 

Lemma.  acts non-trivially on  

How many terms are acted on non-trivially?

Ei =
1
2 (1 − ⟨ψ |Hi |ψ⟩)

S ∈ Stab( |ψ⟩) i ⇒ ⟨ψ |Hi |ψ⟩ ≤
1

2

≥
1
2 (1 −

1

2 ) = sin2( π
8 ) S



Global bound — how many terms?

Lemma. , prepared by  T gates  qubits are acted on non-trivially. 

Proof idea:  

1.  

2. If  acted non-trivially on  qubits . 

|ψ⟩ ≤ α ⇒ ≥ n − α

|Stab( |ψ⟩) | ≥ 2n−α

Stab( |ψ⟩) < n − α ⇒ |Stab( |ψ⟩) | < 2n−α ⇒ ⇐



Global bound — how many terms?

Lemma. , prepared by  T gates  qubits are acted on non-trivially. |ψ⟩ ≤ α ⇒ ≥ n − α

⇒ ⟨ψ |HD |ψ⟩ ≥ (n − α
n )sin2( π

8 )
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Joint NLTS/NLACS

1. Trivial (i.e. Low-depth circuit) states — NP via light cone argument 

2. “Sampleable states” — MA via dequantizing QSVT [GL22] 

3. Stabilizer states — NP via stabilizer generators  

4. Almost-Clifford States — NP via linear-combination of stabilizer states 

5. … 

A “QPCP Hamiltonian” simultaneously can’t have any of these in its 
low-energy space.



Joint NLTS/NLACS

1. No low-energy trivial states — NLTS Theorem [Anshu, Breuckmann, Nirkhe 22] 

2. _____________ “sampleable states” — NLSS Conjecture [Gharibian, Le Gall 22] 

3. _____________ stabilizer states — NLCS Theorem [C, Coudron, Nelson, Nezhadi 23a] 

4. _____________ almost-Clifford states — NLACS Theorem [CCNN23b] 

5. _____________ locally-approximately states — NLLS Conjecture [CCNN23a, WFG??]



Joint NLTS/NLACS

1. No low-energy trivial states — NLTS Theorem [Anshu, Breuckmann, Nirkhe 22] 

2. _____________ “sampleable states” — NLSS Conjecture [Gharibian, Le Gall 22] 

3. _____________ stabilizer states — NLCS Theorem [C, Coudron, Nelson, Nezhadi 23a] 

4. _____________ almost-Clifford states — NLACS Theorem [CCNN23b] 

5. _____________ locally-approximately states — NLLS Conjecture [CCNN23a, WFG??]

From CSS Hamiltonians

Rotated CSS Hamiltonians

Rotated CSS Hamiltonians



CSS Hamiltonians

, , all terms commute. 

 ground space  

 ground-states are highly stabilized. 

 ground space is a CSS QLDPC code

H =
1
m

m

∑
i=1

I − S⊗k
i

2 Ai

Si ∈ {X, Z}

|ψ⟩ ∈ ⇔ {S⊗k
i |Ai

} ⊆ Stab( |ψ⟩)

m = Θ(n) ⇒

k = O(1) ⇒



CSS Hamiltonians

Theorem [ABN22]. There an explicit family of QLDPC CSS Hamiltonians, , which 
has the NLTS property.

H



Can we rotate NLTS Hamiltonians so that they 
become NLACS?



CSS Hamiltonians

Theorem [ABN22]. There an explicit family of QLDPC CSS Hamiltonians, , which has 
the NLTS property. 

Theorem. If  is a QLDPC CSS Hamiltonian which satisfies NLTS, then   
simultaneously satisfies NLTS and NLACS. 

(In fact, low-energy states require  T gates)

H

H H̃ ≡ D⊗nHD†⊗n

Ω(n)



Rotating CSS  NLACS⇒

Proof components. 

Step 0. Rotating a local Hamiltonian by 
a constant-depth circuit preserves NLTS.

H C†C

Depth O(1)



Rotating CSS  NLACS⇒

Proof components.  

Step 0. Rotating a local Hamiltonian by 
a constant-depth circuit preserves NLTS.

H C†C

Depth O(1)



Local terms of H̃

H̃ ∝ D⊗n(∑
i

I − X⊗k

2
Ai

)D†⊗n



Local terms of H̃

 

Local energy: 

H̃ ∝ ∑
i

I − H⊗k

2
Ai

Ei =
1
2 (1 − ⟨ψ |H⊗k

Ai
|ψ⟩)

{ } = A



Rotating CSS  NLACS⇒

Proof components. 

, arbitrary state 

1. A local condition of  at  
implies an energy bound on the term. 

2.  satisfies this for  terms 
of  if it is sufficiently large. 

Combined   is NLACS

|ψ⟩

Stab( |ψ⟩) A

Stab( |ψ⟩) Θ(m)
H̃ ≡ D⊗nHD†⊗n

⇒ H̃

{ } = A



Rotating CSS  NLACS⇒

Proof components. 

, arbitrary state 

1. A local condition of  at  
implies an energy bound on the term. 

2.  satisfies this for  terms 
of  if it is sufficiently large. 

Combined   is NLACS

|ψ⟩

Stab( |ψ⟩) A

Stab( |ψ⟩) Θ(m)
H̃ ≡ D⊗nHD†⊗n

⇒ H̃

{ } = A



Local bound — single term

Suppose  acts non-trivially at  S ∈ Stab( |ψ⟩) A

{ } = A

S



Local bound — single term

Suppose  acts non-trivially at  

If the overlap has an odd # of :

S ∈ Stab( |ψ⟩) A

Y′ s

{ } = A

S

—— 0



Local bound — single term

Suppose  acts non-trivially at  

If the overlap has an odd total # of ’s and ’s

S ∈ Stab( |ψ⟩) A

X Z

{ } = A

S



Local bound — single term

Suppose  acts non-trivially at  

If the overlap has an odd total # of ’s and ’s 
then  and  have anti-commuting 
stabilizers.  

By Fact 2 the bound holds.

S ∈ Stab( |ψ⟩) A

X Z
|ψ⟩ (H⊗k)Ai

|ψ⟩

{ } = A

≤
1

2



Local bound — single term

Suppose  acts non-trivially at  

How to guarantee these happen?

S ∈ Stab( |ψ⟩) A

{ } = A



Local views and locally-commuting sets

Local view of  at qubits 1 and 2: P

P = P1 ⊗ P2 ⊗ P3 ⊗ ⋯ ⊗ Pn

ρ{1,2}(P) = P1 ⊗ P2 ⊗ I ⊗ ⋯ ⊗ I



Local views and locally-commuting sets

Local view of  at : 

Def.  is locally-commuting at  if  is a commuting group. 

e.g.

P A ⊆ [n]

S ⊆ 𝒫n A ⊆ [n] ρA(S)

ρA(P) = {
Pi  if i ∈ A

I  if i ∉ A



Pseudo-stabilizer property

Def.  is a pseudo-stabilizer state at  if there is a subset  s.t. 

1.  is locally-commuting at  

2.  (max possible size)

|ψ⟩ A ⊆ [n] S ⊆ Stab( |ψ⟩)

S A

|ρA(S) | = 2|A|



Local bound

Lemma. If  is pseudo-stabilizer at , then  contains either: 

1. A term with an odd # of ’s 

2. A term with a total odd # of ’s and ’s 

Corollary. If  is pseudo-stabilizer at , then .

|ψ⟩ A ρA(S)

Y

X Z

|ψ⟩ A ⟨ψ |
I − H⊗k

2 A
|ψ⟩ ≥ sin2( π

8 )



Global bound — how many terms?

Proof components. 

, arbitrary state 

1. If  is pseudo-stabilizer at , then 
there is a local energy lower bound. 

2.  satisfies this for  terms 
of  if it is sufficiently large. 

Combined   is NLACS

|ψ⟩

|ψ⟩ A

Stab( |ψ⟩) Θ(m)
H̃ ≡ D⊗nHD†⊗n

⇒ H̃

How to guarantee this for an 
almost-Clifford state?



Lemma. , prepared by  T gates for  is pseudo-stabilizer at  
local terms of  . 

Proof idea. 

1. [Sort of] Trivial: upper bound on T-count gives lower bound on size of . 

2. Upper bound on size of  in terms of sizes of locally-commuting subsets 

Thus, large stabilizer group  many large locally-commuting subsets

|ψ⟩ ≤ cn c ∈ (0,1) ⇒ |ψ⟩ Ω(n)
H̃ ≡ D⊗nHD†⊗n

Stab( |ψ⟩)

Stab( |ψ⟩)

⇒

Global bound — how many terms?



Local + global

Lemma. If  is pseudo-stabilizer at   . 

Lemma. , prepared by  T gates for  is pseudo-stabilizer at  
local terms of  . 

Theorem. , prepared by  T gates for 

|ψ⟩ A ⇒ ⟨ψ |
I − H⊗k

2 A
|ψ⟩ ≥ sin2( π

8 )
|ψ⟩ ≤ cn c ∈ (0,1) ⇒ |ψ⟩ Ω(n)

H̃ ≡ D⊗nHD†⊗n

|ψ⟩ ≤ cn c ∈ (0,1) ⇒ ⟨ψ | H̃ |ψ⟩ = Ω(1)
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• New hardness results for LH- , 
BQP-hardness, MA-hardness, etc.

Ω(1)

“State lower bounds” “Complexity lower bounds”

Ruling out classes of witnesses for LH-  Ω(1)



More directions

• Primitives for QPCP: 

• Quantum locally-testable codes (QLTCs) 

• Quantum PCPs of Proximity (QPCPPs) or QPCPs of weaker soundness/locality 

• Variants of QPCP: 

• QCPCP Conjecture [Weggemens, Folkertsma, Cade 23] 

• QPCP1 Conjecture, i.e., perfect completeness (gap amplification for Clique 
Homology?)



Recap

Energy estimation in NP/MA implies a special type of state 

If QPCP is true and QMA NP,MA then these states can’t 
be in the low-energy space of arbitrary local Hamiltonians. 

NLTS, NLCS, NLACS verify that some of these are true 

NLSS, NLLS are still open

≠

Egs ≡ min
|ψ⟩

⟨ψ |H |ψ⟩

Egs + ϵ

min
|ψ⟩∈𝒳

⟨ψ |H |ψ⟩

No states ∈ 𝒳



Thanks!

Energy estimation in NP/MA implies a special type of state 

If QPCP is true and QMA NP,MA then these states can’t 
be in the low-energy space of arbitrary local Hamiltonians. 

NLTS, NLCS, NLACS verify that some of these are true 

NLSS, NLLS are still open

≠

Egs ≡ min
|ψ⟩

⟨ψ |H |ψ⟩

Egs + ϵ

min
|ψ⟩∈𝒳

⟨ψ |H |ψ⟩

No states ∈ 𝒳







NLLS

NP energy estimation for trivial, stabilizer, almost-Clifford share a similar theme. 

A state is -locally approximable if: 

(1)  has an efficient classical description, . 

(2) There is an efficient classical algorithm, , which computes all -reduced states of , 
i.e., for all 

k

|ψ⟩ desc( |ψ⟩) ∈ {0,1}poly(n)

W k |ψ⟩
A ⊆k [n]

W(A, desc( |ψ⟩)) − Tr−A[ |ψ⟩⟨ψ | ] ≤ ϵ = O(1)



NLLS

NP energy estimation for trivial, stabilizer, almost-Clifford share a similar theme. 

, -locally approximable  energy estimation in NP 

No low-energy locally-approximately states — NLLS Conjecture [CCNN23a, WFG23] 

Question. Does an NLLS Hamiltonian exist?

|ψ⟩ k ⇒



NLSS

Candidate Hamiltonian:  where  is a family of Haar-

random, constant-depth circuits. 

Ground state . 

Theorem [HE23].  is not sampleable unless the Polynomial Hierarchy collapses. 

Question. Are low-enough energy states of  also not sampleable?

CH0C† ≡
1
n ∑ C† |1⟩⟨1 |i C C

= C |0⟩⊗n

C |0⟩⊗n

CH0C†



NLSS

Rotated QLTC Hamiltonian: 

Let  be a QLTC Hamiltonian and , Haar-random constant-depth circuit. 

Question. Are ground states of  not sampleable? 

Question. If  is not sampleable and , is  not sampleable? 

Combined  rotated QLTC is an NLSS Hamiltonian

H C

CHC†

|φ⟩ dist( |ψ⟩, |φ⟩) ≤ ϵn |ψ⟩

⇒



QLTCs

A QLDPC Hamiltonian, , corresponds to a good quantum locally-testable code 
(QLTC) if . 

Question. Do good QLTCs exist? 

Fact [EH17]. If  corresponds to a QLTC then  is an NLTS Hamiltonian.

H
⟨ψ |H |ψ⟩ ≥ dist( |ψ⟩, gs(H))/n

H H




