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Quantum storage

Is the 
encoding of

Encode



Quantum codes

 logical qubitsk

 physical qubits n

The code ≡  dimensional 
subspace 
2k

𝒞 ⊆ (ℂ2)⊗n

 dimensional subspace k C ⊆ 𝔽 n
2Classical codes ≡



Logic in quantum codes

Logic: apply gates to physical qubits to 
transform one logical code state into another

Encode: ℰ

Is the 
encoding of| ψ̄⟩ ≡ ℰ( |ψ⟩) | ψ̄⟩

|ψ⟩

| ψ̄′￼⟩

|ψ′￼⟩

U



Logic in quantum codes

Want: physical application of  to 
implement a logical 

U ∈ U(2n)
V ∈ U(2k)

U | ψ̄⟩ = Uℰ( |ψ⟩)

|ψ⟩

ℰ(V |ψ⟩)

V |ψ⟩

| ψ̄⟩ ≡ ℰ( |ψ⟩)



Transversal logic in quantum codes

Want: physical application of      to 
implement a logical 

Ui ∈ U(2n)
V ∈ U(2k)

| ψ̄⟩ ≡ ℰ( |ψ⟩) U | ψ̄⟩ = Uℰ( |ψ⟩)

|ψ⟩

ℰ(V |ψ⟩)

V |ψ⟩
n

⨂
i=1



Logic in quantum codes

• To reliably perform quantum computations we will need to understand 
the logic of quantum codes  

• Many works studying/constructing codes with non-trivial logic 

See talks by Navin (yesterday) and Quynh (next) 

• Fruitful interaction between combinatorics/coding/quantum



Stabilizer codes

                              I ≡ [1 0
0 1] X ≡ [0 1

1 0] Z ≡ [1 0
0 −1] Y ≡ [0 −i

i 0 ]

≅ ℂ2n



Stabilizer codes

                              I ≡ [1 0
0 1] X ≡ [0 1

1 0] Z ≡ [1 0
0 −1] Y ≡ [0 −i

i 0 ]

Y Z I⊗ ⊗ ⊗ Y⊗ X⊗X

≅ ℂ2n−1

+1 eigenspace



Stabilizer codes

                              I ≡ [1 0
0 1] X ≡ [0 1

1 0] Z ≡ [1 0
0 −1] Y ≡ [0 −i

i 0 ]

Y Z I⊗ ⊗ ⊗ Y⊗ X⊗

I Z X Y⊗ ⊗ ⊗ Z⊗ Y⊗

X

Commute!Joint +1 eigenspace

≅ ℂ2n−2



Stabilizer codes

                              I ≡ [1 0
0 1] X ≡ [0 1

1 0] Z ≡ [1 0
0 −1] Y ≡ [0 −i

i 0 ]

Y Z I⊗ ⊗ ⊗ Y⊗ X⊗

I Z X Y⊗ ⊗ ⊗ Z⊗ Y⊗

X

Commute!

≅ ℂ2n−3

Joint +1 eigenspace

Z I Z X⊗ ⊗ ⊗ Z⊗ I⊗



Stabilizer codes

                              I ≡ [1 0
0 1] X ≡ [0 1

1 0] Z ≡ [1 0
0 −1] Y ≡ [0 −i

i 0 ]

Y Z I⊗ ⊗ ⊗ Y⊗ X⊗

I Z X Y⊗ ⊗ ⊗ Z⊗ Y⊗

Z I Z X⊗ ⊗ ⊗ Z⊗ I⊗

X

Commute!Joint +1 eigenspace

≅ ℂ2n−k

⋮



Stabilizer codes

                              I ≡ [1 0
0 1] X ≡ [0 1

1 0] Z ≡ [1 0
0 −1] Y ≡ [0 −i

i 0 ]

I⊗ ⊗ ⊗ ⊗ X⊗

I Z⊗ ⊗ ⊗ Z⊗ ⊗

Z I I⊗ ⊗ ⊗ Z⊗ I⊗Z

X X X

Z Z Z

X

⋮



Stabilizer codes

                              I ≡ [1 0
0 1] X ≡ [0 1

1 0] Z ≡ [1 0
0 −1] Y ≡ [0 −i

i 0 ]

I⊗ ⊗ ⊗ ⊗ X⊗

I Z⊗ ⊗ ⊗ Z⊗ ⊗

Z I I⊗ ⊗ ⊗ Z⊗ I⊗Z

X X X

Z Z Z

X

⋮



CSS Codes

I⊗ ⊗ ⊗ ⊗ X⊗

I Z⊗ ⊗ ⊗ Z⊗ ⊗

Z I I⊗ ⊗ ⊗ Z⊗ I⊗Z

X X X

Z Z Z

X

⋮

                             I2 ≡ [1 0
0 1] X2 ≡ [1 0

0 1] Z2 ≡ [1 0
0 1] Y2 ≡ [1 0

0 1]

⊆

≅ CX

𝔽n
2

⊆

≅ CZ

𝔽n
2

Commutativity    ⇔ CX ⊆ CZ
⊥

 code[[n, n − dim CX − dim CZ, d]]



Aside: a note on conventions

Three competing conventions: 

1. “Stabilizer first”: 

2. “Parity check matrix first”: 

3. “  basis first”:X

  CX ⊆ CZ
⊥

  C⊥
1 ⊆ C2

  C′￼1 ⊆ C′￼2

Stabilizers

Logical Paulis

 stabilizers/logicalsX

The codes give:



Quantum Reed–Muller Codes



Boolean hypercube

• Consider  qubits indexed by bit strings n = 2m {0,1}m

Vertices  -bit strings 

Edges  differ by 1 bit

≡ m

≡

differ by a standard 
basis element ei

=



Boolean hypercube

• Consider  qubits indexed by bit strings  

• Contains many sub-hypercubes, or faces, 

n = 2m {0,1}m

A ⊑ {0,1}m

Vertices  -bit strings 

Edges  differ by 1 bit

≡ m

≡

differ by a standard 
basis element ei

=
A



Boolean hypercube

• Consider  qubits indexed by bit strings  

• Contains many sub-hypercubes, or faces,  

• Can define  and  “face operators”

n = 2m {0,1}m

A ⊑ {0,1}m

X Z

XA ZB

X
Z

X

X

X

X

X

X

X

Z

Z Z



Quantum RM codes

Definition. Take integers   . The order-  quantum Reed–
Muller code, , has stabilizers generated by: 

Fact. An -face and -face have even overlap whenever .

−1 < q < r < m (q,r)
QRMm(q,r)

i j i + j > m

    ,  𝒮X ≡ {XA | A ⊑ {0,1}m dim A = m−q}

    ,   𝒮Z ≡ {ZB | B ⊑ {0,1}m dim B = r +1}



QRM4(0,2)

{XA | A is a face with dim = 4} {ZB | B is a face with dim = 3}

 stabilizersX  stabilizersZ



Why “Reed–Muller”?

Lemma. Consider indicator functions  of -faces: 

The following holds: 

Corollary.  is “generated by” -faces.

𝟙A : {0,1}m → {0,1} (m − q)

RM(q, m) (m − q)

-variate polynomials with  { ∑
dim A=m−q

cA𝟙A(x1, …, xm) cA ∈ {0,1}} = {m deg ≤ q}

𝟙A(x1, …, xm) ≡ {1 x1⋯xm ∈ A
0 otherwise



Theorem.  has parametersQRMm(q, r)

Quantum RM codes

RM(q, m)

RM(m − r − 1,m)

# physical ,  # logical ,  [[ = 2m =
r

∑
i=q+1

(m
i ) d = min(2m−r,2q+1)]]

Pick   q ≤ r ≤ m  stabilizersX

 stabilizersZ



Transversal logic in quantum codes

| ψ̄⟩ ≡ ℰ( |ψ⟩) U | ψ̄⟩ = Uℰ( |ψ⟩)

| ψ̄⟩

ℰ(V |ψ⟩)

V |ψ⟩

Want: physical application of      to 
implement a logical 

Ui ∈ U(2n)
V ∈ U(2k)

n

⨂
i=1



Logical  and  operatorsX Z

 and  stabilizers are “logical identity” 

•  if and only if  

•    if and only if  

Lemma. Non-trivial  and  operators are generated by face operators: 

•  if and only if           for some logical  operators 

•    if and only if           for some logical  operators

X Z

dim A ≥ m−q XA | ψ̄⟩ = | ψ̄⟩

dim B ≥ r+1 ZB | ψ̄⟩ = | ψ̄⟩

X Z

dim A ≥ m−r XA | ψ̄⟩ = ℰ( |ψ⟩) Xℓ

dim B ≥ q+1 ZB | ψ̄⟩ = ℰ( |ψ⟩) Zℓ

∏
ℓ∈L

Xℓ

∏
ℓ∈L

Zℓ



QRM4(0,2)

Bases for the logical Pauli spaces



Quantum RM codes

 stabilizersX  logicalsX

RM(q, m) RM(r, m)⊆

 stabilizersZ  logicalsZ

RM(m − r − 1,m) RM(m − q − 1,m)⊆

  q ≤ r ≤ m



• /   face operators generate the /  stabilizer/logical spaces 

• Can inductively prove that many more face operators implement logic 

Consider 

X Z X Z

Z(k) ≡ [1 0
0 ei π

2k ]
-th level of the 

Clifford Hierarchy
Z(k) ∈ k

, phase gateZ(1) = S

Face operators

-Z( 1) = I
Z(0) = Z

Z(2) = T = S

⋱

No logic Non-trivial Trivial
dim B

Theorem. Let . The dimension of  determines when  
performs logic on :

B ⊑ {0,1}m B Z(k)B
QRMm(q, r)



Corollary. If  is a non-trivial logical then it implements a logical circuit 
of multi-controlled-  operators.

Z(k)B
Z

What is the logic?

Z(k)

⋅ ℰ( |ψ⟩) = ℰ( |ψ⟩)

Only guarantees there is a circuit; 
does not claim what the circuit is

Z(k)

Z(k)

Z(k)

Z(k)

Z(k)

Z(k)

Z(k)



Comparison to prior work

Several works have examined the operators : 

Rengaswamy, Calderbank, Newman, Pfister considered  

• Logic of  in terms of phase polynomials 

Hu, Liang, Calderbank considered general  

• Necessary and sufficient conditions on  for when  implements 
non-trivial logic

Z(k)⊗2m

QRMm(r − 1,r)

Z(k)⊗2m

QRMm(q, r)

k Z(k)⊗2m



Comparison to prior work

We examined the operators  for arbitrary -faces 

We considered general : 

• Combinatorial description of the logic of  

We considered general : 

• Necessary and sufficient conditions on  for when  implements 
non-trivial logic 

The circuits we construct can act on strict subsets of both the physical 
and logical qubits.

Z(k)A k

QRMm(q, r)

Z(k)A

QRMm(q, r)

k Z(k)A



Detailing the logic



Physical level

• How are physical qubits indexed? 

 

• What is the physical gate? 

Pick  

Consider all  bit strings with length  supported on  ( ) 

, acting as  if  and  otherwise

z ∈ {0,1}m

K ⊆ [m] ≡ {1,…, m}

⟨K⟩ ≡ 2|K| m K dim⟨K⟩ = |K |

Z(k)⟨K⟩ Z(k) supp(z) ⊆ K I



Logical level

• How are logical qubits indexed? 

 stores              logical qubits of information, so define: 

• What is the logical circuit?

QRMm(q, r)  
r

∑
i=q+1

(m
i )
𝒬 ≡ {J ⊆ [m] q + 1 ≤ |J | ≤ r}
{1}
{2}
{3}

{1,2}
{1,3}
{2,3}

Ex. , , q = 0 r = 2 m = 3



Defining the circuits

1. -qubit controlled- : applies a  phase to  k Z −1 |1k⟩

|010111⟩|010111⟩ =



Defining the circuits

1. -qubit controlled- : applies a  phase to   k Z −1 |1k⟩

− |110110⟩|110110⟩ =



Defining the circuits

1. -qubit controlled- : applies a  phase to   

2. Pick  such that 

A collection  of (index sets of) logical qubits is called a minimal cover 
for  if 

(Cover property)   

(Minimality property) 

k Z −1 |1k⟩

K ⊆ [m]

𝒥 ⊆ 𝒬
K

⋃
J∈𝒥

J = K

|𝒥 | = k + 1

|K |



Defining the circuits

3. Consider all minimal covers for , denoted . 

Let  denote the circuit composed of -qubit controlled-  
gates each acting on logical qubits from .

K ℱ(K)

Cℱ(K)Z (k + 1) Z
ℱ(K)

Ex. , , q = 0 r = 2 m = 5 K = {1,2,3,4,5} ⇒

k = 2

|K | ∈ (4,6]



Defining the circuits

3. Consider all minimal covers for , denoted . 

Let  denote the circuit composed of -qubit controlled-  
gates each acting on logical qubits from .

K ℱ(K)

Cℱ(K)Z (k + 1) Z
ℱ(K)

Ex. , , q = 0 r = 2 m = 5

{3} ∪ {1,5} ∪ {2,4}

𝒥 = {{3}, {1,5}, {2,4}}

=

{1,2,3,4,5}

|𝒥 | = 2 + 1

K = {1,2,3,4,5} k = 2

Cover:

Minimal:



Defining the circuits

3. Consider all minimal covers for , denoted . 

Let  denote the circuit composed of -qubit controlled-  
gates each acting on logical qubits from .

K ℱ(K)

Cℱ(K)Z (k + 1) Z
ℱ(K)

Theorem. Let . If  performs logic on  then for 
every code state :

K ⊆ [m] Z(k)⟨K⟩ QRMm(q, r)
ℰ( |ψ⟩)

  Z(k)⟨K⟩ℰ( |ψ⟩) = ℰ(Cℱ(K)Z |ψ⟩)



Defining the circuits

3. Consider all minimal covers for , denoted . 

Let  denote the circuit composed of -qubit controlled-  
gates each acting on logical qubits from .

K ℱ(K)

Cℱ(K)Z (k + 1) Z
ℱ(K)

Theorem. Let . If  performs logic on  then for 
every code state :

B ⊑ {0,1}m Z(k)B QRMm(q, r)
ℰ( |ψ⟩)

  Z(k)Bℰ( |ψ⟩) = ℰ(Cℱ(B)Z |ψ⟩)



Example circuits

 acting on T⊗32 QRM5(0,2)



Example circuits

 acting on T⊗32 QRM5(0,2)

 acting on T⊗32 ⊗ I⊗32 QRM6(0,2)

 acting on T⊗64 QRM6(1,2)

 acting on T⊗64 QRM6(0,2)



Summary

1. Constructed quantum RM codes using the Boolean hypercube 

2. Gave necessary and sufficient conditions for when face operators 
perform non-trivial logic 

3. Gave a combinatorial characterization of the implemented logical 
circuits via minimal covers 

Led to a new family of binary codes: “Coxeter codes” 

Combinatorics of Coxeter groups  similar structural properties to RM⇒



What’s left?

1. The logical  space is governed by a classical RM code. 

Is the logical  space governed by “generalized RM codes over ”? 

2. Can the logical multi-controlled-  gates be “unentangled”?

Z

Z(k) ℤ2k+1

Z



1. The logical  space is governed by a classical RM code. 

Is the logical  space governed by “generalized RM codes over ”? 

2. Can the logical multi-controlled-  gates be “unentangled”?

Z

Z(k) ℤ2k+1

Z

What’s left?

Setting some qubits to | 0̄⟩



What’s left?

1. The logical  space is governed by a classical RM code. 

Is the logical  space governed by “generalized RM codes over ”? 

2. Can the logical multi-controlled-  gates be “unentangled”? 

3. Can the Boolean hypercube picture aid in the study of balanced/
punctured quantum RM codes and their logic?

Z

Z(k) ℤ2k+1

Z



Questions?

1. The logical  space is governed by a classical RM code. 

Is the logical  space governed by “generalized RM codes over ”? 

2. Can the logical multi-controlled-  gates be “unentangled”? 

3. Can the Boolean hypercube picture aid in the study of balanced/
punctured quantum RM codes and their logic?

Z

Z(k) ℤ2k+1

Z


