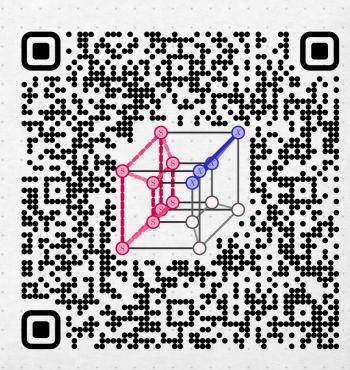
Quantum Reed-Muller Codes

and their transversal logic

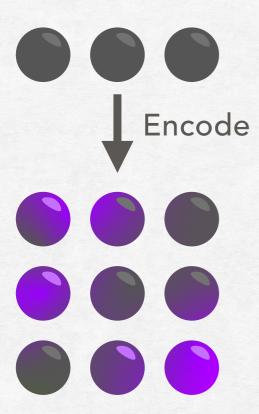
Nolan J. Coble, Alexander Barg, Dominik Hangleiter, Chris Kang

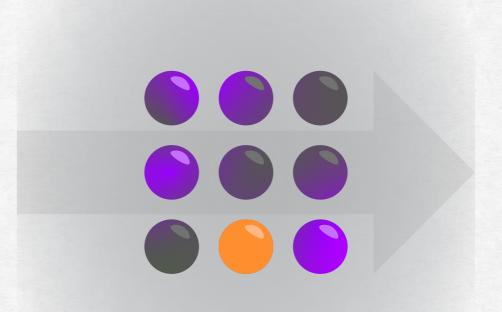


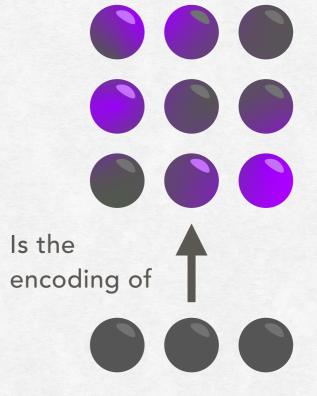
Classical communication



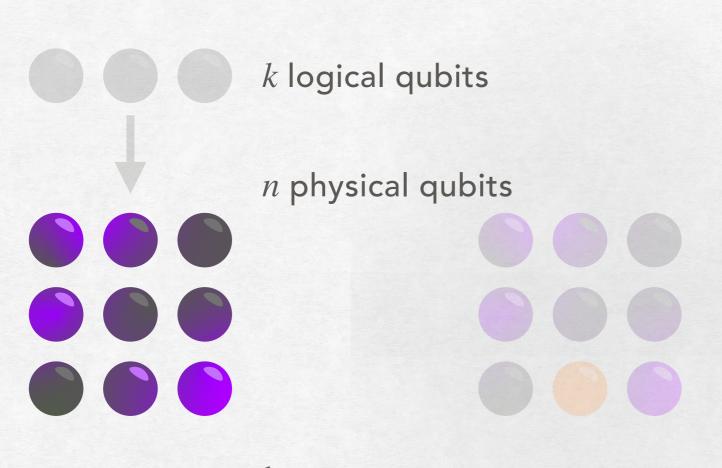
Quantum storage



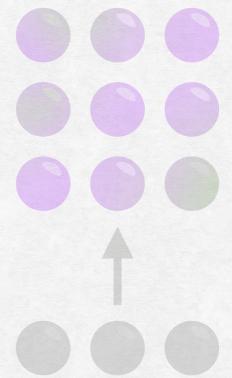




Quantum codes

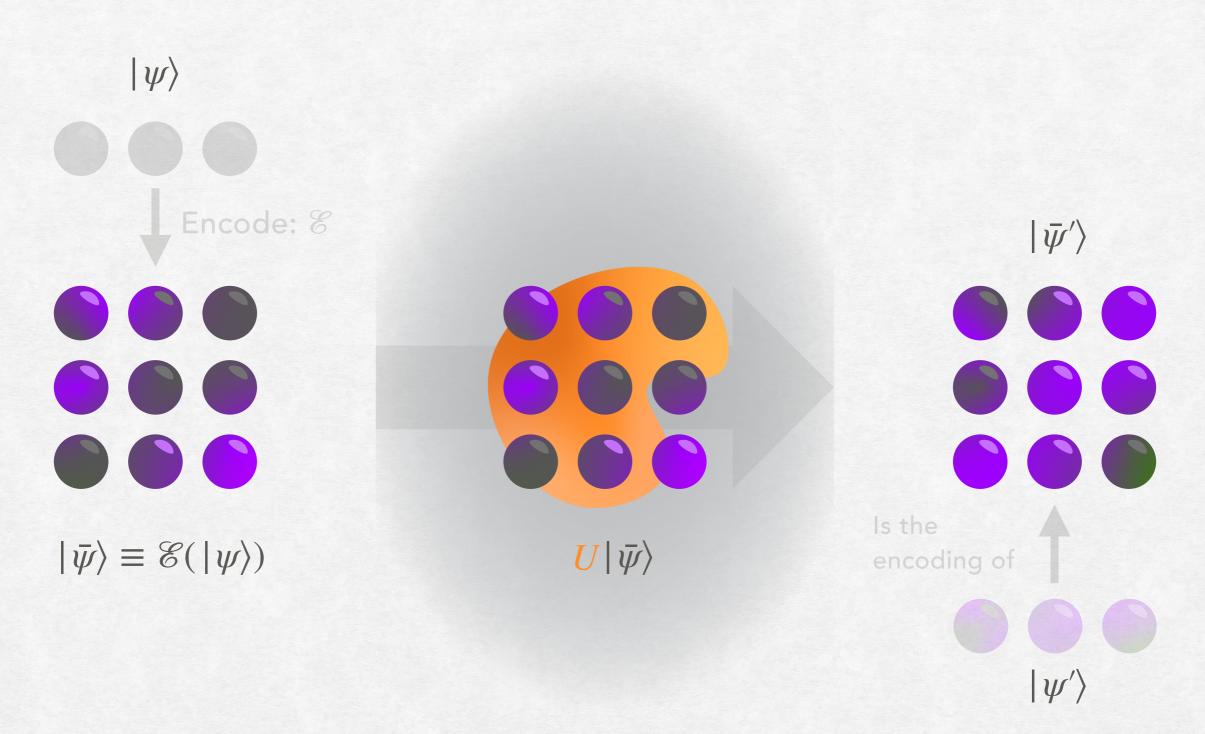


The
$$code \equiv 2^k$$
 dimensional subspace $\mathcal{C} \subseteq (\mathbb{C}^2)^{\otimes n}$



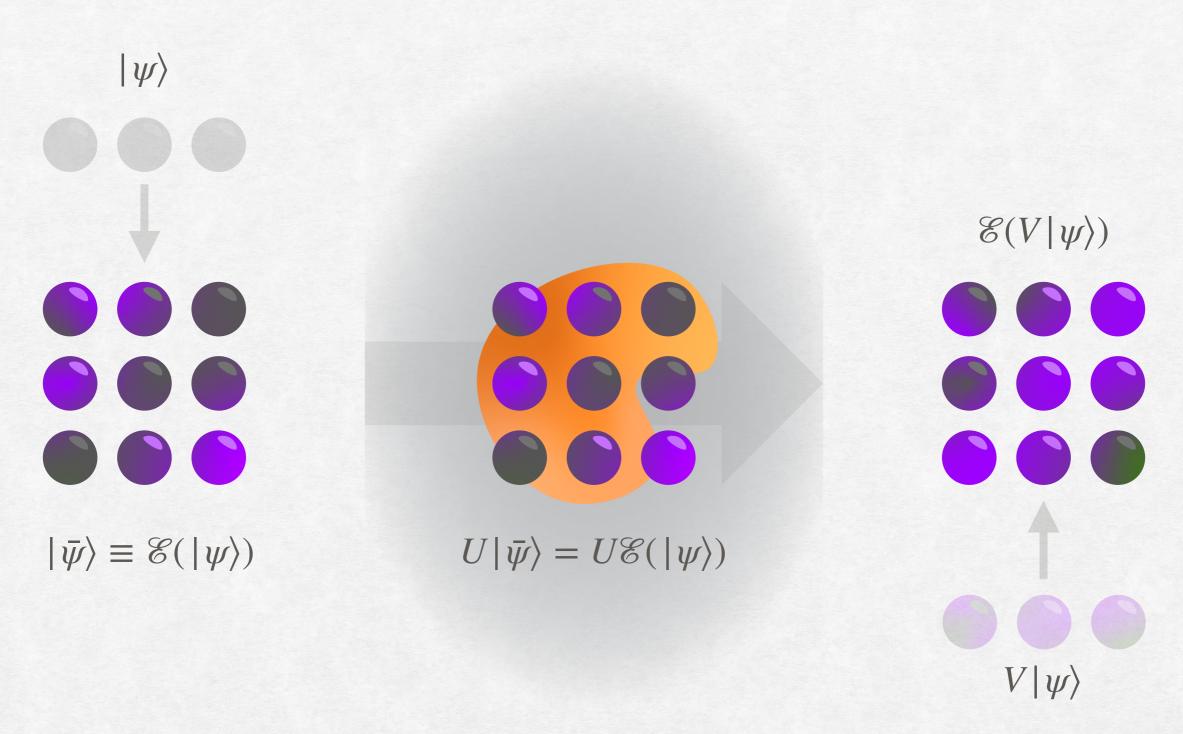
Classical codes $\equiv k$ dimensional subspace $C \subseteq \mathbb{F}_2^n$

Logic in quantum codes



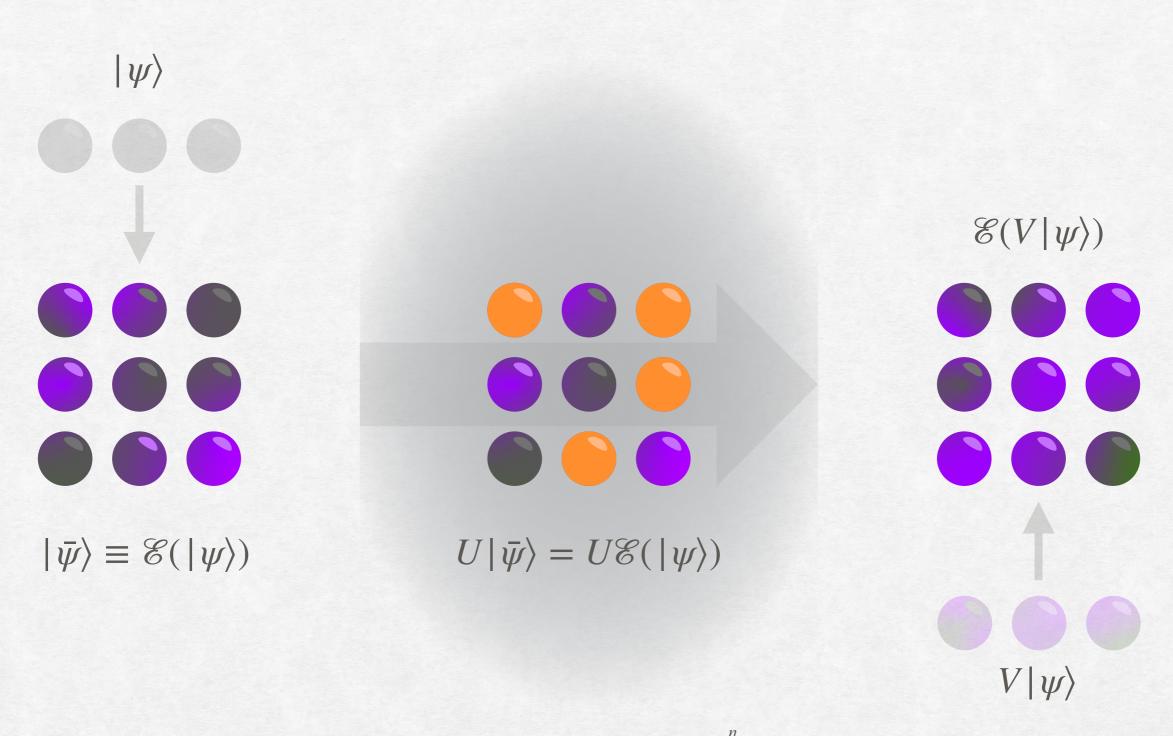
Logic: apply gates to physical qubits to transform one logical code state into another

Logic in quantum codes



Want: physical application of $U \in \mathrm{U}(2^n)$ to implement a logical $V \in \mathrm{U}(2^k)$

Transversal logic in quantum codes



Want: physical application of $\bigotimes^n U_i \in \mathrm{U}(2^n)$ to implement a logical $V \in \mathrm{U}(2^k)$

Logic in quantum codes

 To reliably perform quantum computations we will need to understand the logic of quantum codes

Many works studying/constructing codes with non-trivial logic

See talks by Navin (yesterday) and Quynh (next)

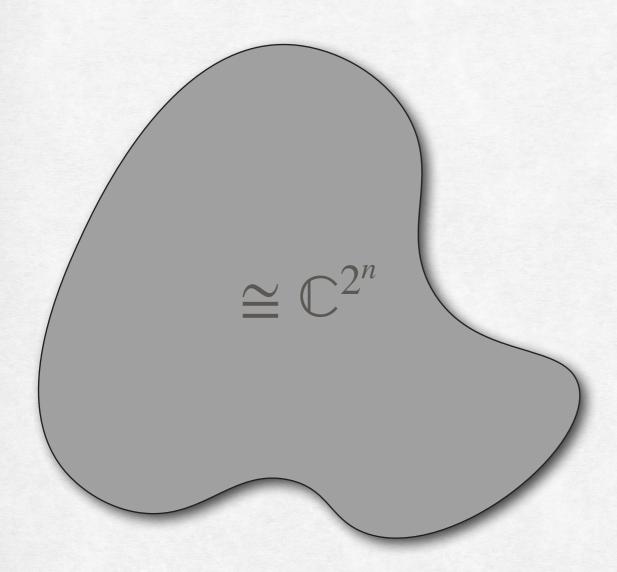
Fruitful interaction between combinatorics/coding/quantum

$$I \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$I \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad Y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

$$Y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$



$$I \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad Y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

$$Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$Y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

+1 eigenspace

$$\cong \mathbb{C}^{2^{n-1}}$$

$$X \otimes Y \otimes Z \otimes I \otimes Y \otimes X$$

$$I \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$I \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad Y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

$$Y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

Joint +1 eigenspace

Commute!

$$\cong \mathbb{C}^{2^{n-2}}$$

$$X \otimes Y \otimes Z \otimes I \otimes Y \otimes X$$
 $I \otimes Z \otimes X \otimes Y \otimes Z \otimes Y$

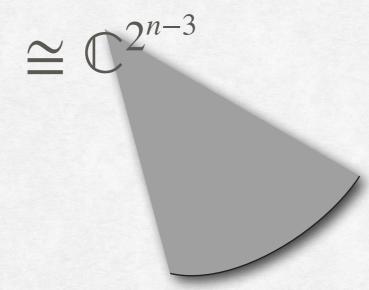
$$I \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$I \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad Y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

Joint +1 eigenspace



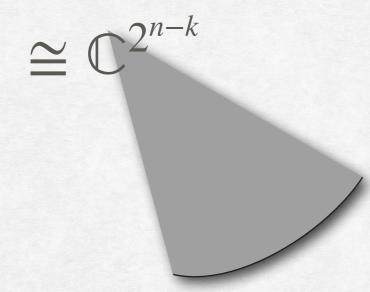
$$I \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$I \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad Y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

$$Y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

Joint +1 eigenspace



$$I \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$I \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad Y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

$$X \otimes X \otimes X \otimes I \otimes X \otimes X$$

$$I \otimes Z \otimes Z \otimes Z \otimes Z \otimes Z$$

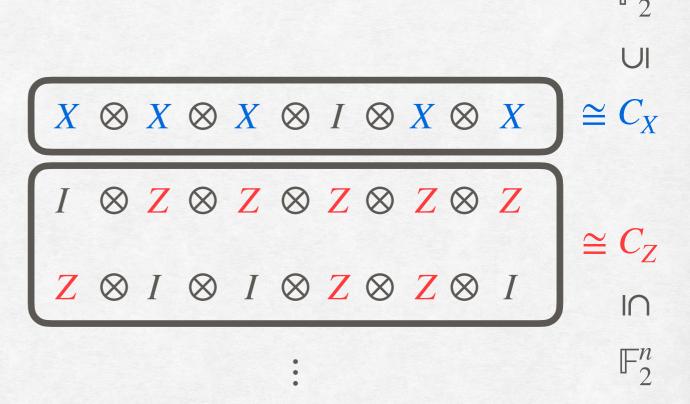
$$Z \otimes I \otimes I \otimes Z \otimes Z \otimes I$$

$$I \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad Y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

CSS Codes

$$I^{2} \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad X^{2} \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad Z^{2} \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad Y^{2} \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Commutativity $\Leftrightarrow C_X \subseteq C_Z^{\perp}$



 $[[n, n - \dim C_X - \dim C_Z, d]]$ code

Aside: a note on conventions

Three competing conventions:

The codes give:

1. "Stabilizer first":

$$C_X \subseteq C_Z^{\perp}$$

Stabilizers

2. "Parity check matrix first": $C_1^{\perp} \subseteq C_2$

$$C_1^{\perp} \subseteq C_2$$

Logical Paulis

3. "X basis first":

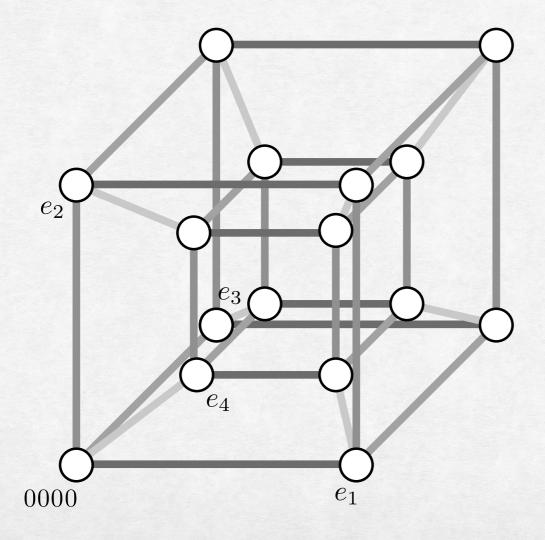
$$C_1' \subseteq C_2'$$

X stabilizers/logicals

Quantum Reed-Muller Codes

Boolean hypercube

• Consider $n = 2^m$ qubits indexed by bit strings $\{0,1\}^m$

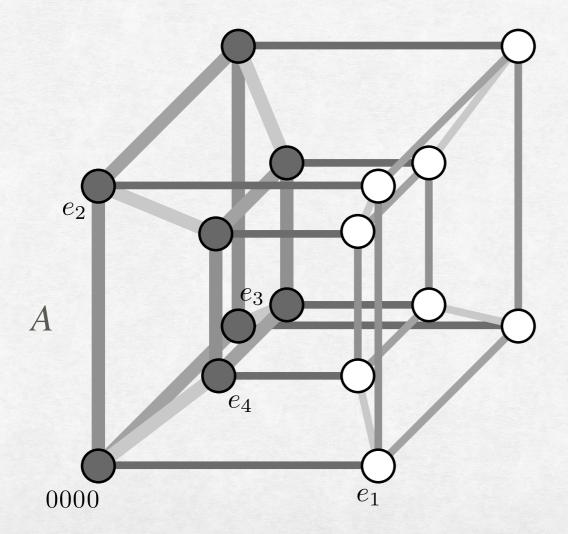


Vertices $\equiv m$ -bit strings

Edges \equiv differ by 1 bit = differ by a standard basis element e_i

Boolean hypercube

- Consider $n = 2^m$ qubits indexed by bit strings $\{0,1\}^m$
- Contains many sub-hypercubes, or faces, $A \sqsubseteq \{0,1\}^m$



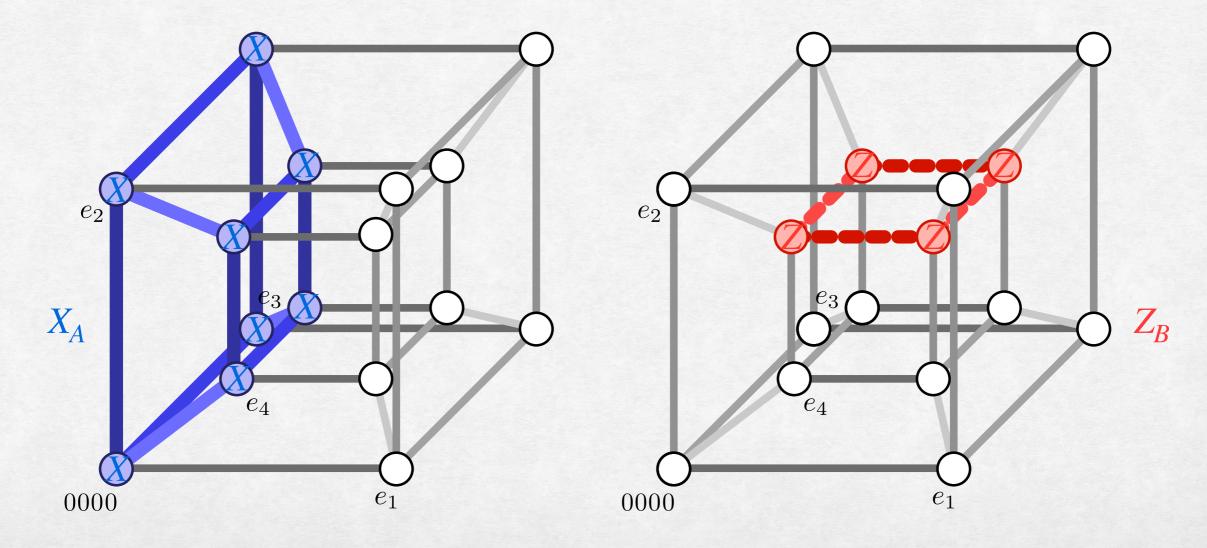
Vertices $\equiv m$ -bit strings

Edges \equiv differ by 1 bit

= differ by a standard basis element e_i

Boolean hypercube

- Consider $n = 2^m$ qubits indexed by bit strings $\{0,1\}^m$
- Contains many sub-hypercubes, or faces, $A \sqsubseteq \{0,1\}^m$
- Can define X and Z "face operators"



Quantum RM codes

Definition. Take integers -1 < q < r < m. The order-(q,r) quantum Reed-Muller code, $QRM_m(q,r)$, has stabilizers generated by:

$$S_X \equiv \{X_A \mid A \sqsubseteq \{0,1\}^m, \dim A = m - q\}$$

$$\mathcal{S}_{\mathbf{Z}} \equiv \left\{ \mathbf{Z}_{\mathbf{B}} \mid B \sqsubseteq \{0,1\}^m, \dim B = r+1 \right\}$$

Fact. An *i*-face and *j*-face have even overlap whenever i + j > m.

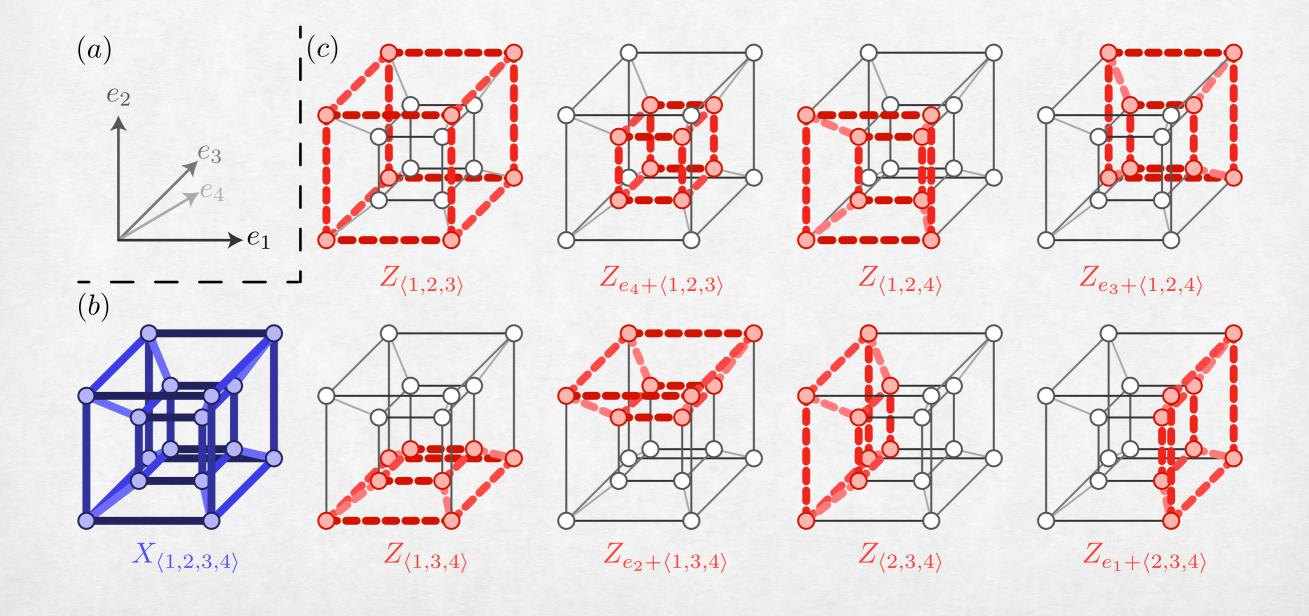
$QRM_{4}(0,2)$

X stabilizers

Z stabilizers

 ${X_A \mid A \text{ is a face with dim} = 4}$

 $\{Z_B \mid B \text{ is a face with dim} = 3\}$



Why "Reed-Muller"?

Lemma. Consider indicator functions $\mathbb{1}_A$: $\{0,1\}^m \to \{0,1\}$ of (m-q)-faces:

$$\mathbb{1}_{A}(x_{1},...,x_{m}) \equiv \begin{cases} 1 & x_{1} \cdots x_{m} \in A \\ 0 & \text{otherwise} \end{cases}$$

The following holds:

$$\left\{ \sum_{\dim A=m-q} c_A \mathbb{1}_A(x_1,\ldots,x_m) \,\middle|\, c_A \in \{0,1\} \right\} = \left\{ \text{m-variate polynomials with $\deg \leq q$} \right\}$$

Corollary. RM(q, m) is "generated by" (m - q)-faces.

Quantum RM codes

Pick
$$q \le r \le m$$

X stabilizers

RM(q, m)

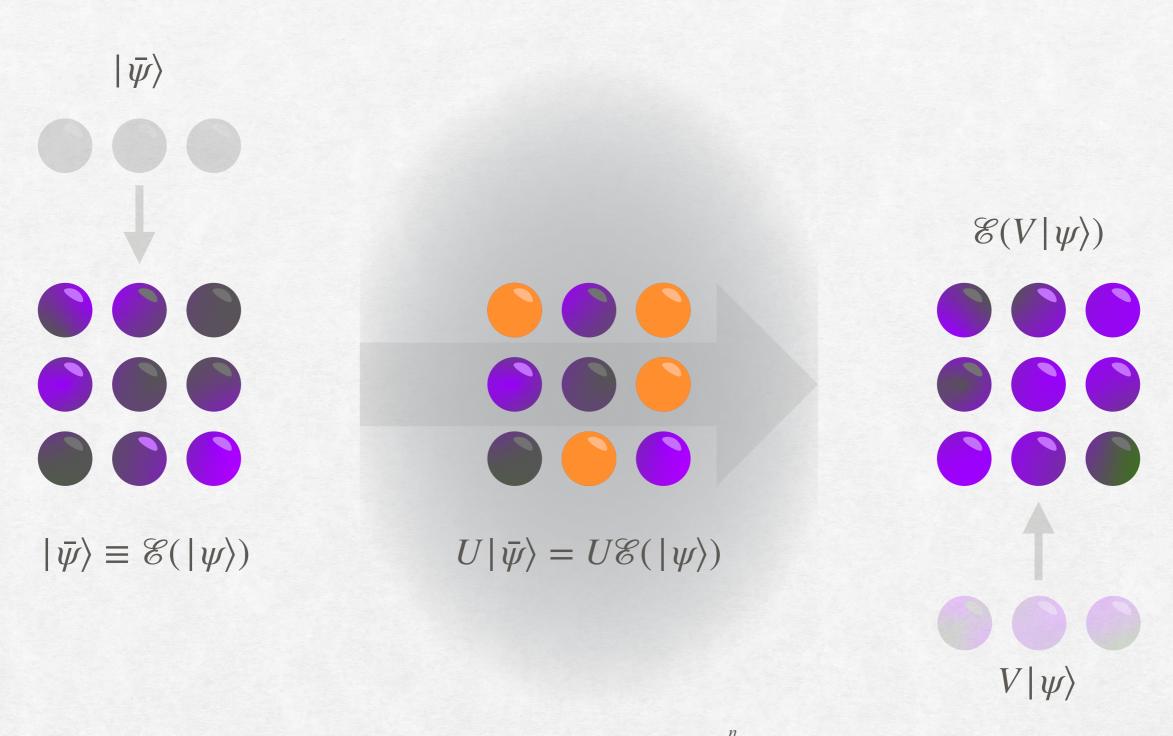
Z stabilizers

RM(m-r-1,m)

Theorem. $QRM_m(q, r)$ has parameters

$$\left[\left[\text{\# physical} = 2^m, \text{\# logical} = \sum_{i=q+1}^r {m \choose i}, d = \min(2^{m-r}, 2^{q+1}) \right] \right]$$

Transversal logic in quantum codes



Want: physical application of $\bigotimes^n U_i \in \mathrm{U}(2^n)$ to implement a logical $V \in \mathrm{U}(2^k)$

Logical X and Z operators

X and Z stabilizers are "logical identity"

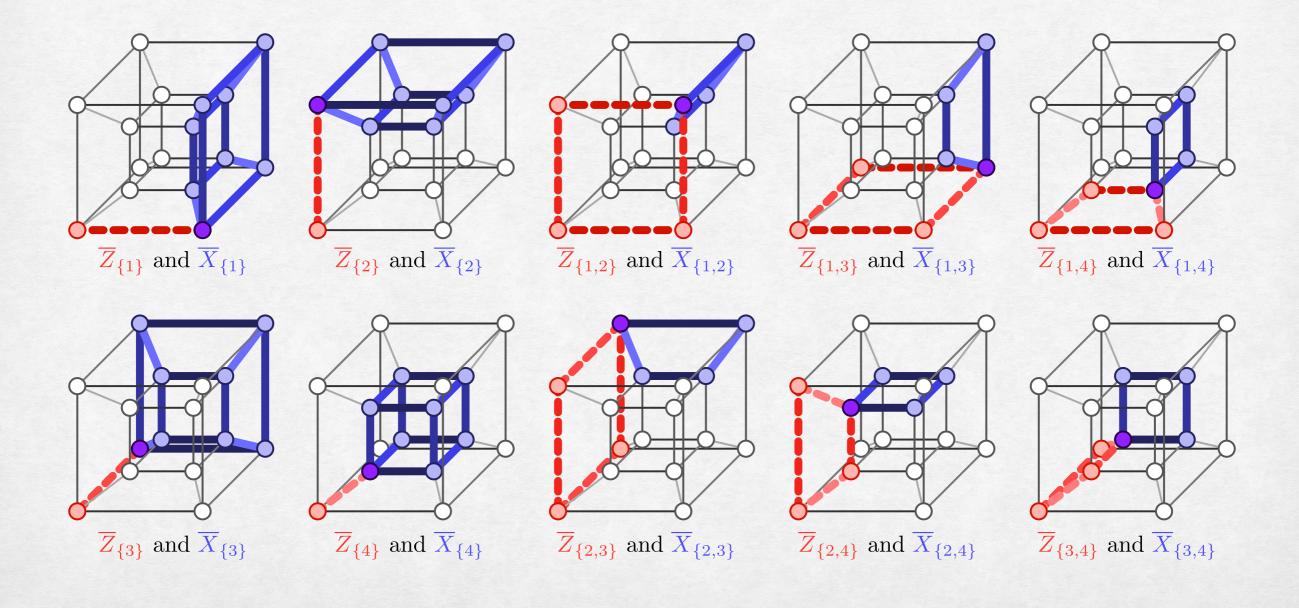
- $\dim A \ge m q$ if and only if $X_A | \bar{\psi} \rangle = | \bar{\psi} \rangle$
- dim $B \ge r+1$ if and only if $Z_B | \bar{\psi} \rangle = | \bar{\psi} \rangle$

Lemma. Non-trivial X and Z operators are generated by face operators:

- $\dim A \ge m-r$ if and only if $X_A | \bar{\psi} \rangle = \mathscr{C}(\prod_{\ell \in L} X_\ell | \psi \rangle)$ for some logical X_ℓ operators
- $\dim B \ge q+1$ if and only if $Z_B | \bar{\psi} \rangle = \mathscr{C}(\prod_{\ell \in L} Z_\ell | \psi \rangle)$ for some logical Z_ℓ operators

$QRM_4(0,2)$

Bases for the logical Pauli spaces



Quantum RM codes $q \le r \le m$

X stabilizers X logicals

 $RM(q,m) \subseteq RM(r,m)$

Z logicals **Z** stabilizers

 $RM(m-r-1,m) \subseteq RM(m-q-1,m)$

Face operators

- X/Z face operators generate the X/Z stabilizer/logical spaces
- · Can inductively prove that many more face operators implement logic

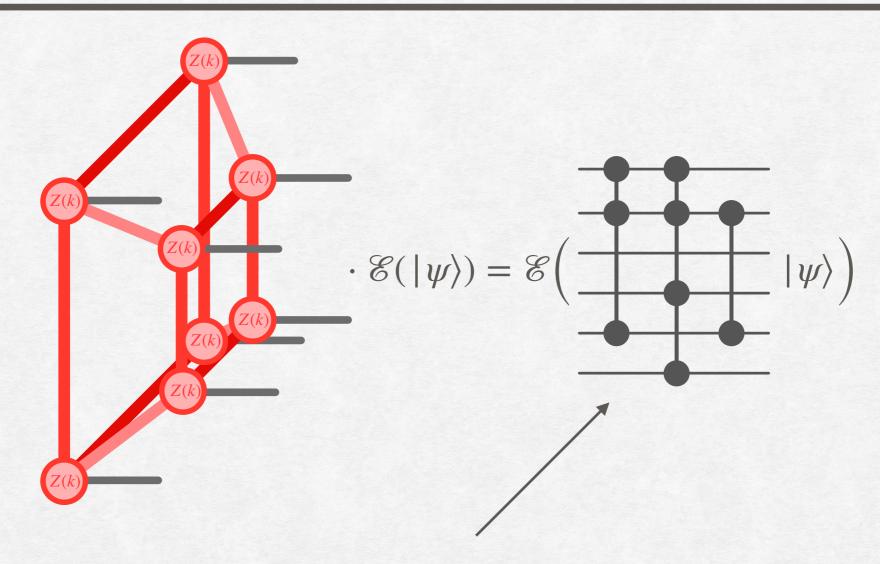
Consider
$$Z(k) \equiv \begin{bmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{2^k}} \end{bmatrix}$$
 $Z(2) = T = \sqrt{S}$ $Z(1) = S$, phase gate $Z(0) = Z$ $Z(-1) = I$

Theorem. Let $B \subseteq \{0,1\}^m$. The dimension of B determines when $Z(k)_B$ performs logic on $QRM_m(q,r)$:

$$\dim B \in \bigvee$$
No logic
 $q + kr$
 $(k+1)r$

What is the logic?

Corollary. If $Z(k)_B$ is a non-trivial logical then it implements a logical circuit of multi-controlled-Z operators.



Only guarantees there is a circuit; does not claim what the circuit is

Comparison to prior work

Several works have examined the operators $Z(k)^{\otimes 2^m}$:

Rengaswamy, Calderbank, Newman, Pfister considered $QRM_m(r-1,r)$

• Logic of $Z(k)^{\otimes 2^m}$ in terms of phase polynomials

Hu, Liang, Calderbank considered general $QRM_m(q, r)$

• Necessary and sufficient conditions on k for when $Z(k)^{\otimes 2^m}$ implements non-trivial logic

Comparison to prior work

We examined the operators $Z(k)_A$ for arbitrary k-faces

We considered general $QRM_m(q, r)$:

• Combinatorial description of the logic of $Z(k)_A$

We considered general $QRM_m(q, r)$:

• Necessary and sufficient conditions on k for when $\mathbf{Z}(k)_A$ implements non-trivial logic

The circuits we construct can act on strict subsets of both the physical and logical qubits.

Detailing the logic

Physical level

How are physical qubits indexed?

$$z \in \{0,1\}^m$$

What is the physical gate?

Pick $K \subseteq [m] \equiv \{1, ..., m\}$

Consider $\langle K \rangle \equiv$ all $2^{|K|}$ bit strings with length m supported on K ($\dim \langle K \rangle = |K|$)

 $Z(k)_{\langle K \rangle}$, acting as Z(k) if $supp(z) \subseteq K$ and I otherwise

Logical level

How are logical qubits indexed?

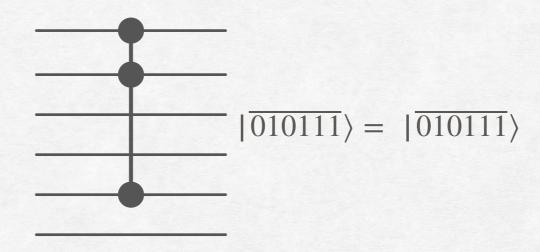
$$QRM_m(q,r)$$
 stores $\sum_{i=q+1}^r {m \choose i}$ logical qubits of information, so define:

$$\mathcal{Q} \equiv \left\{ J \subseteq [m] \mid q+1 \le |J| \le r \right\}$$

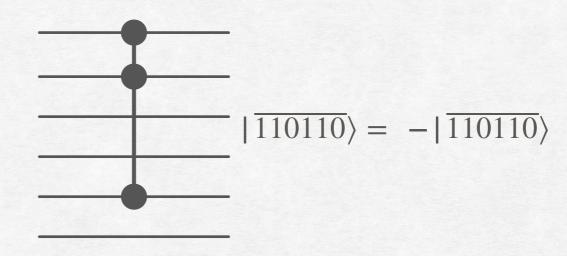
Ex. $q = 0$, $r = 2$, $m = 3$ {1}	
{2}	
{3}	
{1,2}	
{1,3}	
{2,3}	

What is the logical circuit?

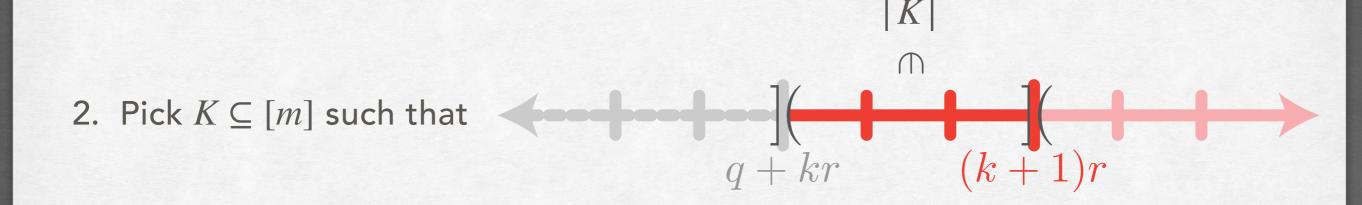
1. k-qubit controlled-Z: applies a -1 phase to $|\overline{1^k}\rangle$



1. k-qubit controlled-Z: applies a -1 phase to $|\overline{1^k}\rangle$



1. k-qubit controlled-Z: applies a -1 phase to $|\overline{1^k}\rangle$



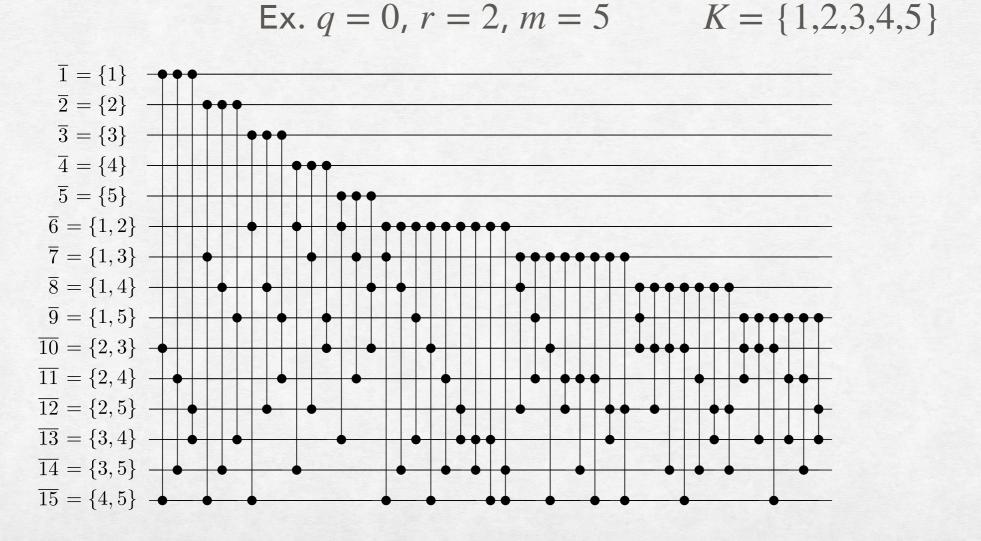
A collection $\mathcal{J}\subseteq\mathcal{Q}$ of (index sets of) logical qubits is called a *minimal cover* for K if

(Cover property)
$$\bigcup_{J \in \mathcal{J}} J = K$$

(Minimality property) $|\mathcal{J}| = k + 1$

3. Consider all minimal covers for K, denoted $\mathcal{F}(K)$.

Let $C^{\mathcal{F}(K)}Z$ denote the circuit composed of (k+1)-qubit controlled-Z gates each acting on logical qubits from $\mathcal{F}(K)$.



$$|K| \in (4,6]$$

$$\downarrow k = 2$$

3. Consider all minimal covers for K, denoted $\mathcal{F}(K)$.

Let $C^{\mathcal{F}(K)}Z$ denote the circuit composed of (k+1)-qubit controlled-Z gates each acting on logical qubits from $\mathcal{F}(K)$.

Ex.
$$q = 0$$
, $r = 2$, $m = 5$ $K = \{1,2,3,4,5\}$ $k = 2$

$$\begin{array}{c}
\overline{1} = \{1\} \\
\overline{2} = \{2\} \\
\overline{3} = \{3\} \\
\overline{4} = \{4\} \\
\overline{5} = \{5,4\} \\
\overline{9} = \{1,5\} \\
\overline{10} = \{2,3\} \\
\overline{12} = \{2,5\} \\
\overline{13} = \{3,4\} \\
\overline{14} = \{3,5\} \\
\overline{17} = \{1,5\} \\
\overline{14} = \{3,5\} \\
\overline{14} = \{3,5$$

3. Consider all minimal covers for K, denoted $\mathcal{F}(K)$.

Let $C^{\mathcal{F}(K)}Z$ denote the circuit composed of (k+1)-qubit controlled-Z gates each acting on logical qubits from $\mathcal{F}(K)$.

Theorem. Let $K \subseteq [m]$. If $Z(k)_{\langle K \rangle}$ performs logic on $QRM_m(q,r)$ then for every code state $\mathscr{C}(|\psi\rangle)$:

$$Z(k)_{\langle K \rangle} \mathscr{E}(|\psi\rangle) = \mathscr{E}(C^{\mathscr{F}(K)}Z|\psi\rangle)$$

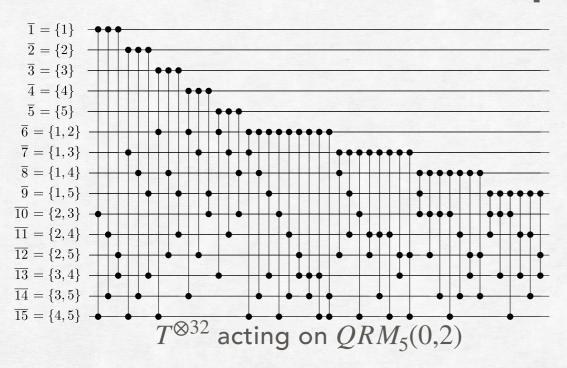
3. Consider all minimal covers for K, denoted $\mathcal{F}(K)$.

Let $C^{\mathcal{F}(K)}Z$ denote the circuit composed of (k+1)-qubit controlled-Z gates each acting on logical qubits from $\mathcal{F}(K)$.

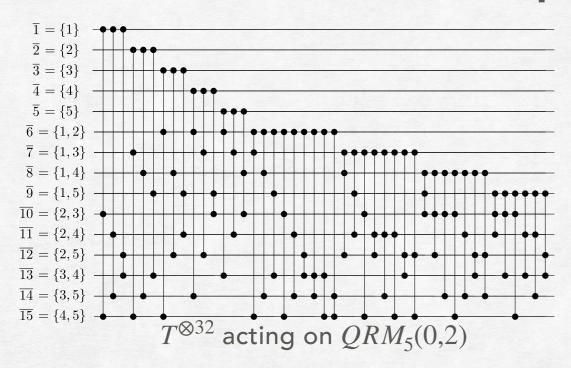
Theorem. Let $B \sqsubseteq \{0,1\}^m$. If $Z(k)_B$ performs logic on $QRM_m(q,r)$ then for every code state $\mathscr{C}(|\psi\rangle)$:

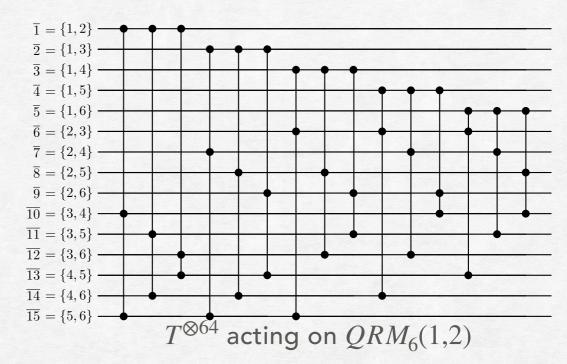
$$\mathbf{Z}(k)_{\mathbf{B}}\mathscr{E}(|\psi\rangle) = \mathscr{E}(C^{\mathscr{F}(B)}Z|\psi\rangle)$$

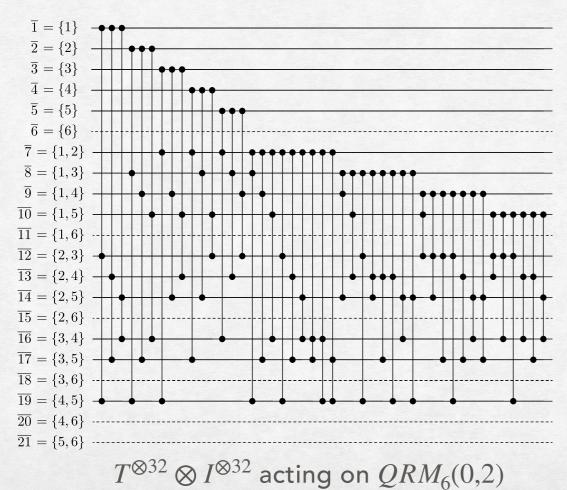
Example circuits

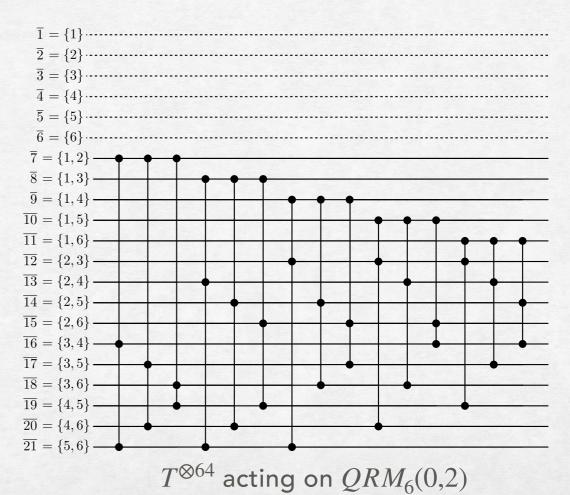


Example circuits









Summary

- 1. Constructed quantum RM codes using the Boolean hypercube
- 2. Gave necessary and sufficient conditions for when face operators perform non-trivial logic
- 3. Gave a combinatorial characterization of the implemented logical circuits via minimal covers

Led to a new family of binary codes: "Coxeter codes"

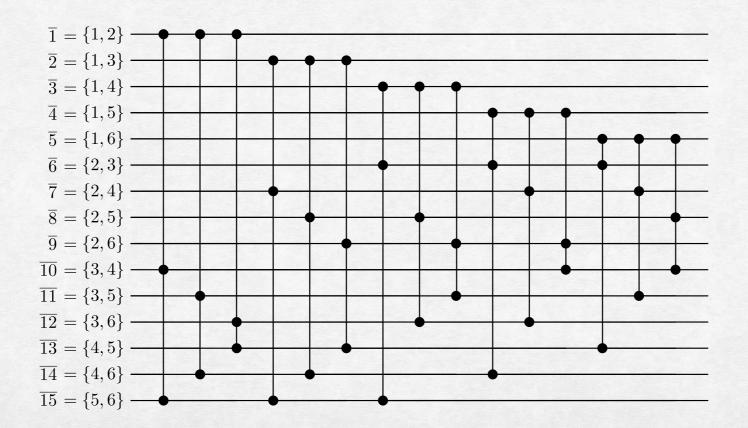
Combinatorics of Coxeter groups ⇒ similar structural properties to RM

What's left?

1. The logical Z space is governed by a classical RM code.

Is the logical Z(k) space governed by "generalized RM codes over $\mathbb{Z}_{2^{k+1}}$ "?

2. Can the logical multi-controlled-Z gates be "unentangled"?

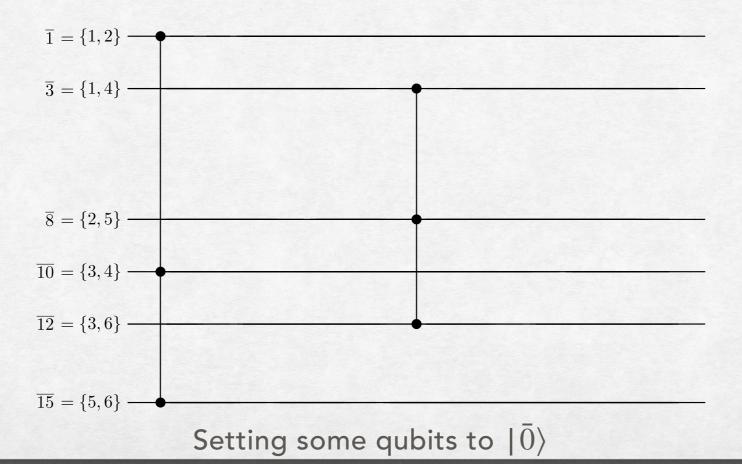


What's left?

1. The logical Z space is governed by a classical RM code.

Is the logical Z(k) space governed by "generalized RM codes over $\mathbb{Z}_{2^{k+1}}$ "?

2. Can the logical multi-controlled-Z gates be "unentangled"?



What's left?

1. The logical Z space is governed by a classical RM code.

Is the logical Z(k) space governed by "generalized RM codes over $\mathbb{Z}_{2^{k+1}}$ "?

2. Can the logical multi-controlled-Z gates be "unentangled"?

3. Can the Boolean hypercube picture aid in the study of balanced/punctured quantum RM codes and their logic?

Questions?

1. The logical Z space is governed by a classical RM code.

Is the logical Z(k) space governed by "generalized RM codes over $\mathbb{Z}_{2^{k+1}}$ "?

2. Can the logical multi-controlled-Z gates be "unentangled"?

3. Can the Boolean hypercube picture aid in the study of balanced/ punctured quantum RM codes and their logic?