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Abstract

The quaternions are a non-commutative division ring that extends the complex
numbers. A gain graph is a simple graph together with a gain function that
assigns a value from an arbitrary group to each edge of the graph. We can define
certain concepts on these graphs such as adjacency and Laplacian matrices, gains
of paths, and more. If we restrict ourselves to the unit norm quaternions, we can
define quaternionic unit gain graphs, or U(H)-gain graphs, as gain graphs where
the domain of the gain function is the unit quaternions. Traditional methods
from spectral graph theory are not directly extended to quaternionic unit gain
graphs due to non-commutativity. In this thesis, we extend a previous result from
complex unit gain graphs, so that the right eigenvalues of the adjacency matrix
for a U(H)-gain cycle can be written explicitly from the gain of the cycle. A
thorough treatment of quaternions, quaternionic linear algebra, T-gain graphs,
and U(H)-gain cycles is given. At the end, the right eigenvalues are calculated
for a particular U(H)-gain cycle, and the results are compared to those obtained
from a MATLAB method for approximating them.
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Chapter 1

Quaternions

1.1 Introduction

A quaternion, is a vector

q = q01 + q1i + q2j + q3k ∈ H

with coefficients qi ∈ R. Note that we will typically refer to the basis element 1

as simply the real number 1. The space of quaternions, denoted H = C2 = R4,

is a division ring, or skew-field. Addition and multiplication on H follow the

typical distributive laws, but multiplication, in particular, is non-commutative.

Multiplication of the basis elements {1, i, j,k} is given by the following:

i2 = j2 = k2 = ijk = −1

Note that this definition implies

ij = k, jk = i, ki = j

The conjugate of q is another quaternion given by

q∗ = q0 − q1i− q2j− q3k

We then note

q∗q = qq∗ = q20 + q21 + q22 + q23 = |q|2

With this, we can define the norm of q as

|q| =
√
q∗q
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which is equivalent to the definition of the Euclidean norm on R4

|q| =
√
q20 + q21 + q22 + q23

The inverse of q ∈ H\{0} is then given by

q−1 =
q∗

|q|2
=
q0 − q1i− q2j− q3k
q20 + q21 + q22 + q23

∈ H

It is trivial to check that this definition of q−1 is in fact the quaternionic inverse

of q.

We define the following functions. The real part and imaginary part of a

quaternion q are given by

Re(q) : H→ R ≡ q 7→ q0

and

Im(q) : H→ R3 ≡ q 7→ (q1, q2, q3) = q1i + q2j + q3k

We note that

|q|2 = |Re(q)|2 + |Im(q)|2 = (q20) + (q21 + q22 + q23)

This fact will be used later in Section 1.3, and will be important for the later

results in Chapter 3.

Some useful properties of quaternions are given in the following theorem.

Theorem 1.1. [14] Let q, w, z ∈ H. The following are true

1. | · | is a norm on H, namely

|q| = 0⇐⇒ q = 0

|q + w| ≤ |q|+ |w|

|qw| = |wq| = |w||q|

2. jc = cj or jcj∗ = c ∀c ∈ C

3. (qw)∗ = w∗q∗

4. (qw)z = q(wz)
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5. q = q∗ ⇐⇒ q ∈ R

6. aq = qa ∀q ∈ H⇐⇒ a ∈ R

7. |q−1| = 1
|q|

8. ∃ unique c1, c2 ∈ C 3 q = c11 + c2j

Proof. See [14]

There are numerous ways to represent the product of two quaternions. Since

H ∼= R4 ∼= R
⊕

R3, we can write a quaternion q as q = q0 +~q, where q0 = Re(q) ∈
R and ~q = (q1, q2, q3) ∈ R3. From this, we can define the product qw ∈ H as

qw = (q0 + ~q)(w0 + ~w) = (q0w0 − ~q · ~w) + (q0 ~w + w0~q + ~q × ~w)

This definition is equivalent to typical component-wise multiplication, and the

proof of this is left as an exercise to the reader. The following can be obtained

from the above definition of multiplication.

Lemma 1.2. Let q = q0 + ~q and w = w0 + ~w ∈ H. The following are true.

1. Re(qw) = Re(wq)

2. Im(qw) = Im(wq)− 2~w × ~q

Proof. 1.

Re(qw) = q0w0 − ~q · ~w = w0q0 − ~w · ~q = Re(wq)

2.

Im(qw) = q0 ~w + w0~q + ~q × ~w

= w0~q + q0 ~w − ~w × ~q

= w0~q + q0 ~w + ~w × ~q − 2~w × ~q

= Im(wq)− 2~w × ~q

3



There is one more representation for quaternions which can be useful. Since

ij = k, we can write a quaternion q = q0 + q1i + q2j + q3k ∈ H as

q = q0 + q1i + (q2 + q3i)j ∈ H

= z1 + z2j where z1, z2 ∈ C

This form will be used briefly in 1.4. Note that this form does not always have

nice properties. For instance

q∗ = z∗1 − z2j 6= z∗1 + z∗2j 6= z1 − z2j

The two not-equal forms are pleasing to look at, but are unfortunately not correct.

Nonetheless, this representation for q can be useful.

1.2 Equivalence Classes

There is a useful equivalence relation that we can define on H. We call two

quaternions, q and w, similar if there exists another quaternion, u ∈ H\{0}, such

that

q = u−1wu

We will denote this by x ∼ y.

Lemma 1.3. ∼ is an equivalence relation on H

Proof. Trivial.

This equivalence relation allows us to define the equivalence class of q ∈ H as

[q] = {w ∈ H | w ∼ q}

≡ [q] = {h−1qh | h ∈ H\{0}}

The use of this definition of similarity will become apparent in Sections 1.3 and

1.4, and later in Section 3.2.

The following lemma is given in several papers [3, 12].

Lemma 1.4. If q and w are two quaternions, then Re(q) = Re(w) and |q| = |w|
is equivalent to q ∼ w.

4



The following is immediate

Corollary 1.5. Re(q) = Re(w) and |Im(q)| = |Im(w)| if and only if q ∼ w.

Proof. By Theorem 1.4 ⇒

q20 + q21 + q22 + q23 = w2
0 + w2

1 + w2
2 + w2

3

q20 + q21 + q22 + q23 = q20 + w2
1 + w2

2 + w2
3

q21 + q22 + q23 = w2
1 + w2

2 + w2
3

Lemma 1.6. ∀q ∈ H⇒ q ∼ q∗

Proof. ∵ Re(q) = Re(q∗) ∧ |q| = |q∗| ⇒ q ∼ q∗

The following states that the equivalence class of every quaternion contains

a complex number. In other words, there always exists a unitary transformation

from q ∈ H to λ ∈ C ∩ [q].

Lemma 1.7. If q = q0 + q1i + q2j + q3k and qC = q0 +
√
q21 + q22 + q23i, then

q ∼ qC ∼ q∗C.

Proof. Clearly, Re(q) = Re(qC) = Re(q∗C) and |Im(q)| = |Im(qC)| = |Im(q∗C)|.
The similarity follows immediately from Corollary 1.2.

Typical proofs of the above lemma demonstrate the particular quaternion used

for the similarity transformation. This proof is clear as to why the quaternion qC

is the similar complex number. By the above, it is clear that, in fact, qC and q∗C

are the only two complex numbers that are similar to q. From the above results,

we can obtain

1.3 Unit Quaternions

The set of unit quaternions is defined as follows:

U(H) = {q ∈ H | |q| = 1}

5



The unit quaternions represent a sphere in R4 and are useful in many appli-

cations (rotations, computer graphics, etc.). Unit length quaternions have several

properties that make them more useful than typical quaternions. For instance, if

q ∈ U(H) then |q−1| = 1 and so q−1 = q∗.

Lemma 1.8. If q, w ∈ H 3 q ∼ w ⇒ ∃ν ∈ U(H) 3 q = ν∗wν

Proof. ∃u ∈ H 3 q = u−1wu. Let ν = u
|u| ∈ U(H). Then ν∗wν = q

Corollary 1.9. If q ∈ H \ R, then there exists two unique complex numbers

z, z∗ ∈ [q] ∩ C where |z| = |z∗| = 1.

In particular, we can denote the equivalence class, [q], by one of its complex

identifiers, [z] = [q]. The following lemma is also useful for unit quaternions.

Lemma 1.10. For every q, w ∈ U(H)⇒ qw ∼ wq

Proof. By Lemma 1.2 ⇒ Re(qw) = Re(wq). Since |qw| = |wq|, by Lemma 1.4

⇒ qw ∼ wq

1.4 Quaternionic Linear Algebra

For the results in this thesis, we will require the notion of quaternionic matrices.

The set Mm×n(H) is the set of all m × n matrices with elements in H. Matrix

addition and multiplication is defined in the usual way; however, since quaternions

are non-commutative, we must define scalar multiplication on a particular side.

For A ∈Mm×n(H) and q ∈ H left scalar multiplication will be defined as

qA = qaij ∀i, j

and right scalar multiplication as

A = aijq ∀i, j

or left/right multiplication of all elements. It is trivial to check that all operations

are associative. The following theorem comes from [14].

Theorem 1.11. ∀A ∈Mm×n(H) and B ∈Mn×p(H)

6



1. (A)T = (AT ) = A∗

2. (AB)∗ = B∗A∗

3. AB 6= AB

4. (AB)T 6= BTAT

5. (AB)−1 = A−1B−1

6. (A−1)∗ = (A∗)−1

7. (A)−1 6= (A−1)

8. (A−1)T 6= (AT )−1

Where there are matrices, there are eigenvalues. Due to non-commutativity,

we must define two very different eigenvalue equations. Given A ∈ Mn×n(H) =

Mn(H) and x ∈ Hn we say λ is a left eigenvalue of A if

Ax = λx

or λ is a right eigenvalue of A if

Ax = xλ

Upon first examination, these two equations may appear to be similar, but

they in fact very different. Right eigenvalues are particularly well understood,

whereas left eigenvalue remain largely untouched. This division occurs because

the right eigenvalue equation is a linear equation; the linearity lends itself nicely to

proofs. The non-linearity of the right eigenvalue equation causes many issues. For

instance, a direct algebraic proof showing the existence of right eigenvalues exists,

but only a topological proof of the existence of left eigenvalues has been found to

date [2]. Left eigenvalues will no longer be mentioned in this thesis (see for more).

From this point on, all mentions of eigenvalues will assume right eigenvalues.

We will denote the spectrum of A as σ(A), which consists of all of the [right]

eigenvalues of A. Quaternionic eigenvalue problems have several nice properties.

Let A ∈Mn(H).

7



Lemma 1.12. If λ ∈ σ(A), then [λ] ⊂ σ(A).

Corollary 1.13. If λ ∈ σ(A), then q−1λq ∈ σ(A) for all q ∈ H.

Lemma 1.14. σ(A) consists of n distinct equivalence classes.

Lemma 1.15. If A is Hermitian (i.e. A∗ = A) then σ(A) ⊂ R.

Lemma 1.16. If U ∈Mn(H) is unitary (i.e. U∗ = U−1) then σ(A) = σ(U∗AU).

Proof. Suppose U ∈Mn(H) is unitary.

⇒ (U∗AU)(U∗x) = U∗Ax = (U∗x)λ

Given A ∈Mn(H), we define the complex representative of A as

χA =

 A1 A2

−A2 A1


where A = A1 + A2j (recall the representation at the end of Section 1.1), and

A1, A2 ∈Mn(C). Note again that

A 6= A1 + A2j, A∗ 6= A∗1 + A∗2j

From this point on, the right eigenvalue theory for quaternionic matrices be-

comes very simple. The following theorem is found in many papers.

Theorem 1.17. Suppose A ∈Mn(H). σ(χA) = σ(A) ∩ C.

Essentially, we can find all of the complex eigenvalues of A by finding the

eigenvalues of its complex representative. Moreover, since q ∈ σ(χA) ⇒ q∗ ∈
σ(χA), by looking at the n distinct equivalence classes of the elements of σ(χA),

we have found all of the right eigenvalues of A!

For the results in Chapter 3, we don’t actually need the above theorem. How-

ever, we can use MATLAB to find the eigenvalues of χA and check the results

that we find in Section 3.4 (which we will do).

The theory of quaternionic linear algebra is rapidly growing, with many papers

being published [4, 6, 14, 12, 3, 2]. [4] also includes some possible applications of

quaternionic linear algebra, particularly in physics. Outside of algebra, quater-

nionic analysis and differential equations are also being developed [1, 5, 8]. These

are far beyond the scope of this paper, however.

8



Chapter 2

Graphs

2.1 Introduction & Gain Graphs

A graph is a pair G = (V,E) where V is the set of vertices and E is the set

of edges. In particular, E is a set of 2-element sets with elements in V , i.e.

{v1, v2} ∈ E, abbreviated as e12, is an edge from v1 to v2. The degree of a vertex

is the number of incident edges on that degree. A simple graph is a graph where

we require

1. eii /∈ E for all i

2. eij = eji ∈ E

That is, we do not allow self-edges, and there are no directions to the edges.

This is of course different from the case of directed graphs, where we relax

this symmetric condition. A symmetric directed graph, in particular, is a

directed graph where the second condition is changed to eij ∈ E ⇐⇒ eji ∈ E. At

first glance this may appear equivalent to the definition of a simple graph. The

difference is that the edges eij and eji are distinct from one another. This will be

important for gain graphs.

The last basic type of graph we will mention here is signed graphs. A signed

graph is a pair Φ = (G,ϕ) where G is a graph, and ϕ : E → {±1} is a function

that assigns a value of 1 or −1 to each edge of the graph. An example of this is

shown in Figure 2.1. We will not look at signed graphs here, but their notion is

helpful in building gain graphs.

A G-gain graph is a triple Φ = (G,G, ϕ) where G is a directed graph, G is

9



+1 +1

+1 +1

-1
-1

Figure 2.1: Example of a signed graph.

a group, and ϕ : E → G is a function assigning values from the group G to each

edge of the directed graph. Furthermore, we require the following of ϕ

ϕ(eji) = ϕ(eij)
−1

or that the value of the reverse direction of an edge is equal to the inverse of that

value. We denote the value associated with an edge as the gain of that edge.

Note that this requirement on ϕ implies that Φ is, in fact, a symmetric directed

graph. An example of a (Z3,+ mod 3)-gain graph is shown in Figure 2.2. Gain

graphs generalize the notion of many other graphs. Namely, a symmetric directed

graph is the case of a ({1}, ·)-gain graph, and a signed graph is a ({±1}, ·)-gain

graph.

Associating a group to a graph allows us to look at various algebraic properties

of these graphs. Before we can do that, there are still a few definitions we will

need to know.

A walk in a graph is a finite sequence of edges which joins together vertices

of the graph. A path is a walk with the additional requirement that each vertex

and edge is only visited once. We will adopt a shorthand notation for a path,

p = e1e2 . . . en where ei = ejk for some vertices vj, vk, and ei+1 = ekl for the same

vertex vk and a new vertex vl. If Φ is a gain graph, we define the gain of a

path to be the product of all of the gains of the edges in the path. Or rather, if

p = e1e2 . . . en is a path in Φ, then ϕ(p) =
∏n

i=1 ϕ(ei).

A cycle in a graph is a path that starts and ends at the same vertex, i.e.

c = e1e2 . . . en where e1 = eij and en = emi. The gain of a cycle is defined in

10



1
2

0

1

1

2

20

0
0

Figure 2.2: Example of (Z3,+ mod 3)-gain graph. Note that the backward direc-
tion will be the additive inverse ( mod 3). i.e. for this group, the addition of the
forward and backward gains will equal 0 in the group.

exactly the same way as the gain of a path. Examples of a walk, path, and cycle

in an arbitrary graph are given in Figure 2.3.

The specific type of graph we focus on in this thesis is a cycle graph. A cycle

graph is graph Cn with n vertices which consists of a single cycle. Cn can be

drawn as a regular n-gon, and the degree of each vertex is 2. We will, of course,

assume that Cn is a symmetric directed graph. Lastly, we define a G-cycle graph

as a gain graph Cn = (Cn,G, ϕ). The gain of a cycle graph, ϕ(Cn), is naturally

defined as the gain of its cycle.

As with quaternions, gain graphs themselves have been increasingly studied

within the last few years [11, 7], complex unit gain graphs (which we will talk

about later), in particular[10, 9, 13]. Many of these results may be extendable

to the quaternionic unit gain graph case, but to date very little has been done in

this regard. In this thesis, a result from [10] is extended for complex unit cycle

graphs.

2.2 Representations

There are many ways of representing a graph. We will look at several of the

algebraic ways to do so here. For the following, let Φ = (G,G, ϕ) be a G-gain

11



(a) Walk (b) Path

(c) Cycle

Figure 2.3: Examples of a walk, path, and cycle within the same graph.

graph with n vertices.

The adjacency matrix A(Φ) of Φ is an n × n matrix with elements (aij) ∈
G ∪ {0} defined by

aij =

ϕ(eij) if eij ∈ E

0 otherwise;

i.e. the (i, j)-th element of A corresponds to the gain of the edge eij.

The degree matrix D(G) of the underlying graph G is an n×n matrix with

elements (dij) ∈ Z≥0 defined by

dij =

degree(vi) if i = j

0 ifi 6= j;

i.e. D is a diagonal matrix with elements corresponding to the degree of each

vertex.

The incidence matrix H(Φ) of Φ is an n× |E| matrix with elements (hvie ∈
G ∪ {0} defined by

hvie =

−ηvjeϕ(eij) if e = eij ∈ E

0 otherwise;

12



Lastly, the Laplacian matrix L(Φ) of Φ is define as L(Φ) = D(G)− A(Φ).

Just looking at G-gain graphs would be a difficult task. To look for more

interesting algebraic results, we need to define what group we are actually looking

at.

2.3 Complex Unit Gain Graphs

A complex unit gain graph is a gain graph Φ = (G,U(C), ϕ) where the un-

derlying group is the set of complex numbers with unit length U(C) = T. The

adjacency, degree, incidence, and Laplacian matrices are defined exactly as before.

From [10] we have the following

Lemma 2.1. Let Φ be a T-gain graph. Then L(Φ) = D(G)−A(Φ) = H(Φ)H(Φ)∗,

where ∗ denotes the complex adjoint.

Many of the results from the theory of T-gain graphs are unnecessary for the

purposes of this paper, and will be omitted. For further information see [10, 13, 9].

2.3.1 Switching

Switching is a way to change the graph we are looking at, while keeping several

properties of the graphs intact. The properties we are mainly interested in are the

spectral properties of the representative matrices. That is, we are interested in

finding σ(A(Φ)) and σ(L(Φ)). Gain functions have the property ϕ(eji) = ϕ(eij)
−1.

For z ∈ T⇒ z−1 = z∗, so it is obvious that the adjacency and Laplacian matrices

of a T-unit gain graph are Hermitian, which of course implies that their eigenvalues

will be real. In general, finding these eigenvalues is a difficult task. For certain

cases, such as cycle graphs, finding the eigenvalues can be greatly simplified.

Let Φ = (G,T, ϕ) be a T-gain graph. A switching function ζ : V → T assigns

a complex unit to each vertex of Φ. We can generate a new graph Φζ = (G,T, ϕζ)
where ϕζ : E → T is defined by

ϕζ(eij) = ζ(vi)
−1ϕ(eij)ζ(vj) = ζ(vi)

∗ϕ(eij)ζ(vj).

Note that since all z ∈ T have unit length, ⇒ z−1 = z∗. Two gain graphs Φ1,Φ2

are said to be switching equivalent if there exists a switching function ζ such

13



that Φ1 = Φζ
2. This definition is, in fact, an equivalence relation which we will

denote ∼ζ . We therefore define the switching class of Φ as

[Φ]ζ = {Γ | Γ ∼ζ Φ}

We define the switching matrix of ζ, Zζ , by (zij = diag(ζ)). That is

zij =

ζ(vi) if i = j

0 if i 6= j;

The following lemma shows that this definition of a switching matrix corresponds

to the correct action on a gain graph.

Lemma 2.2. Let Φ be a T-gain graph and ζ be a switching function. The following

are true:

• A(Φζ) = Z∗ζA(Φ)Zζ

• L(Φζ) = Z∗ζL(Φ)Zζ

The following is also true of the switching matrix.

Lemma 2.3. Let ζ be a switching function on an n-vertex gain graph. Zζ is

unitary. i.e. Z∗ζZζ = In

The proof of the above is by direct computation, and its result is extremely

important for the following:

Theorem 2.4. For all Γ ∈ [Φ]ζ the following are true

• σ(A(Γ)) = σ(A(Φ))

• σ(L(Γ)) = σ(L(Φ))

Proof. Since Γ ∼ζ Φ, there exists a switching function ζ such that Γ = Φζ . Since

Zζ is unitary, we have the following

• σ(A(Γ)) = σ(Z∗ζA(Φ)Zζ) = σ(A(Φ))

• σ(L(Γ)) = σ(Z∗ζL(Φ)Zζ) = σ(L(Φ))

In other words, the eigenvalues for a gain graph’s adjacency and Laplacian ma-

trices are switching invariant. This will lead to a nice form for these eigenvalues

for cycle graphs.

14



2.3.2 Eigenvalues for Cycles

A complex unit gain cycle is a gain graph Cn = (Cn,T, ϕ) where Cn is an

n-vertex cycle graph, and the underlying gain group is the group of all unit norm

complex numbers, T. The gain of a T-gain cycle graph is defined as the gain

of its only cycle.

Theorem 2.5. For every T-gain cycle, Cn = (Cn,T, ϕ), there exists another T-

gain cycle Ξ = (Cn,T, ϕ′) such that Ξ ∈ [Cn]ζ and ϕ(Cn) = ϕ′(Ξ) where ϕ′ : E → T
is given by

ϕ′(en,1) = ϕ(Cn)

and

ϕ′(ei,i+1) = 1 for 0 ≤ i < n

Proof. Let Cn be a T-gain cycle. We define a switching function ξ : V → T as

follows:

ξ(vi) =

1 i = 1(∏i−1
j=1 ϕ(ej,j+1)

)−1
i 6= 1

In other words, the switch for the starting vertex is 1, and the switch for each

vertex, i, after is the inverse of the gain of the path from vertices 1 to i. From ξ,

we generate ϕξ as:

ϕξ(ei,i+1) = ξ(vi)
−1ϕ(ei,i+1)ξ(vi+1)

From the construction of ξ, this reduces to

ϕξ(e12) = ϕ(e12)ξ(v2) = ϕ(e12)ϕ(e12)
−1 = 1

for i = 1,

ϕξ(ei,i+1) = ξ(vi)
−1ϕ(ei,i+1)ξ(vi+1)

=
[( i−1∏

j=1

ϕ(ej,j+1)
)−1]−1

ϕ(ei,i+1)
( i∏
j=1

ϕ(ej,j+1)
)−1

=
( i−1∏
j=1

ϕ(ej,j+1)
)
ϕ(ei,i+1)ϕ(ei,i+1)

−1
( i−1∏
j=1

ϕ(ej,j+1)
)−1

=
( i−1∏
j=1

ϕ(ej,j+1)
)( i−1∏

j=1

ϕ(ej,j+1)
)−1

= 1
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for 1 < i < n, and

ϕξ(en,1) = ξ(n)−1ϕ(en,1)

=
[( n−1∏

j=1

ϕ(ej,j+1)
)−1]−1

ϕ(en,1)

=
( n−1∏
j=1

ϕ(ej,j+1)
)
ϕ(en,1)

= ϕ(e12)ϕ(e23) . . . ϕ(en−1,n)ϕ(en,1) = ϕ(Cn)

for i = n.

Lastly, we have

ϕξ(Ξ) = ϕξ(e12)ϕ
ξ(e23) . . . ϕ

ξ(en,n−1)ϕ
ξ(en,1)

= 1 · 1 · ... · 1 · ϕ(Cn)

= ϕ(Cn)

ϕξ satisfies all results of the theorem.

This result tells us that given any T-gain cycle, we can switch the cycle to an

equivalent cycle with only one non-neutral edge (ϕ(e) 6= 1). This edge, in fact,

contains the gain of the original cycle. Figure 2.4 shows a general T-gain cycle with

7 vertices, along with the switching equivalent cycle based on this construction.

The adjacency matrices for these graphs are

A(C7) =



0 ϕ(e12) 0 0 0 0 ϕ(e17)

ϕ(e12)
∗ 0 ϕ(e23) 0 0 0 0

0 ϕ(e23)
∗ 0 ϕ(e34) 0 0 0

0 0 ϕ(e34)
∗ 0 ϕ(e45) 0 0

0 0 0 ϕ(e45)
∗ 0 ϕ(e56) 0

0 0 0 0 ϕ(e56)
∗ 0 ϕ(e67)

ϕ(e17)
∗ 0 0 0 0 ϕ(e67)

∗ 0


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(a) Generic C7 (b) Switched C7

Figure 2.4: Examples of C7, generic and switched. Note that the switched version
has only one non-neutral edge, and that ϕ(C7) = ϕ(Cζ

7 ).

and

A(Cζ7) =



0 1 0 0 0 0 ϕ(C7)
∗

1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 1 0 1 0 0

0 0 0 1 0 1 0

0 0 0 0 1 0 1

ϕ(C7) 0 0 0 0 1 0


The adjacency matrix for a switched cycle can be decomposed into a useful

form. Given a T-unit gain cycle Cn, we will define a new matrix, P (Cn) = P ∈
Mn(C), with elements (pij) ∈ T ∪ {0} as follows

pij =


1 if j = i+ 1

ϕ(Φ) if i = n, j = 1

0 otherwise;

This matrix will look like

P =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . . . . .

...

0 0 0 · · · 1

ϕ(Φ) 0 0 · · · 0


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Note that if we switch Cn to Cξn, then A(Cξn) = P + P ∗. It can easily be shown

that P is unitary, implying that A(Cξn) = P + P−1.

The following theorem is from [10], and its proof will be reproduced here.

Theorem 2.6. Let Cn = (Cn,T, ϕ) with ϕ(Cn) = eiθ. Then

σ(A(Cn)) =
{

2 cos
(θ + 2πj

n

)
| j ∈ {0, 1, . . . , n− 1}

}
and

σ(L(Cn)) =
{

2− 2 cos
(θ + 2πj

n

)
| j ∈ {0, 1, . . . , n− 1}

}
Proof. Switch Cn to Cξn with A(Cξn) = P + P−1. Since switching is spectrum

preserving, we have σ(A(Cn)) = σ(A(Cξn)) = σ(P + P−1). This implies that

λ ∈ A(Cn) have the form λ(A) = λ(P )+λ(P )−1. We will now find the eigenvalues

of P .

Let x = (x1, x2, . . . , xn) ∈ Cn be an eigenvector of P with corresponding

eigenvalue λ. Examine the eigenvalue equation

Px = λx

Doing this multiplication out

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

eiθ 0 0 · · · 0





x1

x2
...

xn−1

xn


= λ



x1

x2
...

xn−1

xn




x2

x3
...

xn

eiθx1


=



λx1

λx2
...

λxn−1

λxn


This vector equality leads to the following n equations.

x2 = λx1

x3 = λx2
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... =
...

xn = λxn−1

eiθx1 = λxn

With substitutions, these equations yield

x2 = λx1

x3 = λ2x1

... =
...

xn = λn−1x1

eiθx1 = λnx1

We find that λ ∈ σ(P ) must satisfy eiθx1 = λnx1. We end up with

eiθx1 = λnx1 ⇐⇒ eiθ = λn ⇐⇒ λ =
{
ei(

θ+2πj
n

) | j = {0, 1, . . . , n− 1}
}

So that the eigenvalues of A have the form λ(A) = λ(P ) + λ(P )1 = ei(
θ+2πj
n

) +

e−i(
θ+2πj
n

). From Euler’s equation, we find that the complex components cancel

and yield λ(A) =
{

2 cos
(
θ+2πj
n

)
| j ∈ {0, 1, . . . , n − 1}

}
, the result we were

looking for.

Lastly, since each vertex in Cn has degree 2, we know that L(Cn) = 2In−A(Cn).

This implies that, in fact, λ(A) =
{

2−2 cos
(
θ+2πj
n

)
| j ∈ {0, 1, . . . , n−1}

}
.

The outcome of this theorem is the following: given an arbitrary T-gain graph

with gain z ∈ T, we can find the eigenvalues of its adjacency and Laplacian

matrices simply by taking the real part of the n-th roots of z. We have found all

of the eigenvalues by knowing only the gain of the cycle. As we will see in the next

chapter, this result can easily be generalized to gain graphs where the underlying

group is U(H), the unit quaternions that we discussed in Chapter 1.
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Chapter 3

Quaternionic Unit Gain Graphs

3.1 Introduction

A quaternionic unit gain graph is a gain graph Φ = (G,U(H), ϕ) where the

underlying group is the set of quaterions with unit length U(H). The adjacency,

degree, incidence, and Laplacian matrices are defined exactly as in Section 2.2.

Due to the non-commutative nature of quaternions, one would assume that many

of the results from complex unit gain graphs would not be true. Generally speak-

ing, this is actually not the case. Few (if any) of the results from Chapter 2

actually rely on commutativity. In fact, only Theorem 2.6 relied directly on the

commutativity of complex numbers. That downfall, however, does not affect the

results in the following sections.

Despite all of the similarities, there are two important differences that must be

mentioned. First, since only the right eigenvalue equations are unitarily invariant,

we can typically only find the adjacency and Laplacian right eigenvalues. Second,

we must take care in dealing with the gain of a cycle. If c = e1e2 . . . en where

e1 = eij and en = emi is a cycle in Φ = (G,U(H), ϕ), then the gain of the cycle

starting at vertex vi is defined as

ϕi(c) =
∏

α=1...n

ϕ(eα)

Because of non-commutativity the gain will change depending on what vertex

we start at, so we must define a starting vertex. Despite this, we do have the

following result.
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Lemma 3.1. Let Φ = (G,U(H), ϕ). Let c = e1e2 . . . en where e1 = eij and

en = emi be a cycle in Φ starting at vertex i. Suppose there is another cycle which

visits the exact same vertices as c, but starts instead at vertex k. We can denote

this as c = epep+1 . . . ene1 . . . ep−1 where ep = ekl and ep−1 = ejk. Then

ϕi(c) ∼ ϕk(c).

Proof. We have

ϕi(c) =
∏

α=1...n

ϕ(eα)

and

ϕk(c) =
∏

α=p,p+1,...,n,1,...,p−1

ϕ(eα)

We can split these two products up in two particular places. For ϕi(c) we will

split the product between positions p − 1 and p, and for ϕk(c) we will split the

product between positions n and 1. This yields

ϕi(c) =
( ∏
α=1...p−1

ϕ(eα)
)
·
( ∏
α=p...n

ϕ(eα)
)

= Q ·W for some Q,W ∈ U(H)

and

ϕk(c) =
( ∏
α=p,...,n

ϕ(eα)
)
·
( ∏
α=1,...,p−1

ϕ(eα)
)

= W ·Q for some Q,W ∈ U(H)

By Lemma 1.10, ∵ Q,W ∈ U(H) and QW ∼ WQ⇒ ϕi(c) ∼ ϕk(c).

This Lemma allows us to revisit our definition for the gain for a cycle. The

gain of a cycle c in a U(H)-gain graph is the set ϕ(c) = [ϕi(c)], where vi is any

vertex in the cycle. i.e. the gain of a cycle is the quaternionic equivalence class of

the gain starting at any vertex vi of the cycle. From Lemma 3.1 this definition is

consistent. From Lemma 1.9, this equivalence class can uniquely be identified by

one of its complex members.

3.2 Switching

All of the definitions and proofs from Section 2.3.1 are valid for quaternions. Of

course, a switching function will be defined as ζ : E → U(H). If Φ is a U(H)-gain

graph, the result from Theorem 2.4 is changed very slightly.
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Lemma 3.2. For all Γ ∈ [Φ] the following are true

• σr(A(Γ)) = σr(A(Φ))

• σr(L(Γ)) = σr(L(Φ))

Proof. Since the right spectrum of quaternionic matrices is unitarily invariant, the

result is immediate.

3.3 Eigenvalues for Cycles

A quaternionic unit gain cycle is a gain graph Cn = (Cn, U(H), ϕ) where Cn

is an n-vertex cycle graph, and the underlying gain group is the group of all unit

norm quaternions, U(H). From the definition in Section 3.1, we will define the

gain of a cycle graph Cn as the set ϕ(Cn) = [ϕ1(Cn)], where v1 is the first

vertex in the cycle. In particular, we will refer to this set as ϕ(Cn) = [eiθ] where

ϕ1(Cn) ∼ eiθ ∈ C.

The following lemma is useful, but not entirely necessary. Nonetheless, it is a

nice result.

Lemma 3.3. Let Φ = (Cn, U(H), ϕ) and Ψ = (Cn, U(H), ψ) be two U(H)-gain

cycles of the same size. Then Φ ∼ζ Ψ if and only if ϕ1(Φ) ∼ ψ1(Ψ), in the sense

of quaternions.

Proof. (⇒)

The forward direction is easier, so we begin there. We denote the edges of Cn,

e12, e23, . . . , en,1 as ei = ei,i+1 when 1 ≤ i < n and en = en,1 (when i = n).

Since Φ ∼ζ Ψ→ there exists ζ : V → U(H) such that

ψ(ei) = ζ(i)−1ϕ(ei)ζ(i+ 1) when 1 ≤ i < n

and ψ(en) = ζ(n)−1ϕ(ei)ζ(1)

So, when we calculate the gain of Ψ starting at vertex v1, we find

ψ1(Ψ) =
n∏
i=1

ψ(ei)

=
( n−1∏
i=1

ζ(i)−1ϕ(ei)ζ(i+ 1)
)
ζ(n)−1ϕ(ei)ζ(1)
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= ζ(1)−1ϕ(e1)ζ(2)ζ(2)−1 . . . ζ(n− 1)−1ϕ(en−1)ζ(n)ζ(n)−1ϕ(en)ζ(1)

= ζ(1)−1ϕ(e1)ϕ(e2) . . . ϕ(en)ζ(1)

= ζ(1)−1
( n∏
i=1

ϕ(ei)
)
ζ(1)

ψ1(Ψ) = ζ(1)−1ϕ1(Φ)ζ(1)

(⇐)

Since ϕ1(Φ) ∼ ψ1(Ψ)⇒there exists a ν ∈ U(H) such that

ψ1(Ψ) = νϕ1(Φ)ν−1

n∏
i=1

ψ(ei) = ν
( n∏
i=1

ϕ(ei)
)
ν−1

We define a switching function ζ : V → U(H) as

ζ(1) = ν−1

ζ(i) =
[( n∏

j=i

ψ(ej)
)
· ν
( n∏
j=i

ϕ(ej)
)−1]−1

when 1 < i ≤ n

We will now show that Φζ = Ψ, thereby proving the switching equivalence of the

two. We will do this in three parts. Namely, for e1, ei when 1 < i < n, and en.

1. i = 1

ϕ(e1)
ζ = ζ(1)−1ϕ(e1)ζ(2)

= νϕ(e1)
[( n∏

j=2

ψ(ej)
)
· ν
( n∏
j=2

ϕ(ej)
)−1]−1

= νϕ(e1)
[( n∏

j=2

ϕ(ej)
)
ν−1
( n∏
j=2

ψ(ej)
)−1]

=

(
νϕ(e1)

( n∏
j=2

ϕ(ej)
)
ν−1

)( n∏
j=2

ψ(ej)
)−1

=

(
ν
( n∏
j=1

ϕ(ej)
)
ν−1

)( n∏
j=2

ψ(ej)
)−1

Since ϕ1(Φ) ∼ ψ1(Ψ)⇒ =
( n∏
j=1

ψ(ej)
)( n∏

j=2

ψ(ej)
)−1
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= ψ(e1)
( n∏
j=2

ψ(ej)
)( n∏

j=2

ψ(ej)
)−1

ϕ(e1)
ζ = ψ(e1)

2. 1 < i < n

ϕ(ei)
ζ = ζ(i)−1ϕ(ei)ζ(i+ 1)

=
[( n∏

j=i

ψ(ej)
)
ν
( n∏
j=i

ϕ(ej)
)−1]

ϕ(ei)
[( n∏

j=i+1

ψ(ej)
)
ν
( n∏
j=i+1

ϕ(ej)
)−1]−1

=
[( n∏

j=i

ψ(ej)
)
ν
( n∏
j=i

ϕ(ej)
)−1]

ϕ(ei)
( n∏
j=i+1

ϕ(ej)
)
ν−1
( n∏
j=i

ψ(ej)
)−1

=
[( n∏

j=i

ψ(ej)
)
ν
( n∏
j=i

ϕ(ej)
)−1]( n∏

j=i

ϕ(ej)
)
ν−1
( n∏
j=i+1

ψ(ej)
)−1

=
[( n∏

j=i

ψ(ej)
)
ν
][( n∏

j=i

ϕ(ej)
)−1( n∏

j=i

ϕ(ej)
)]
ν−1
( n∏
j=i+1

ψ(ej)
)−1

=
( n∏
j=i

ψ(ej)
)
νν−1

( n∏
j=i

ψ(ej)
)−1

=
( n∏
j=i

ψ(ej)
)( n∏

j=i+1

ψ(ej)
)−1

= ψ(ei)
( n∏
j=i+1

ψ(ej)
)( n∏

j=i+1

ψ(ej)
)−1

ϕζ(ei) = ψ(ei)

3. i = n

ϕζ(en) = ζ(n)−1ϕ(en)ζ(1)

=
(
ψ(en)νϕ(en)−1

)
ϕ(en)ν−1

= ψ(en)(νϕ(en)−1ϕ(en)ν)

ϕζ(en) = ψ(en)

In all cases the switching results with ϕζ(ei) = ψ(ei), so Φ ∼ζ Ψ.
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We immediately obtain the following.

Corollary 3.4. Let Φ = (Cn, U(H), ϕ) and Ψ = (Cn, U(H), ψ) be two U(H)-gain

cycles of the same size. Then Φ ∼ζ Ψ if and only if ϕ(Φ) = ψ(Ψ).

That is to say, given two U(H)-gain cycles, their gains are equal if and only if

they are switching equivalent.

The following theorem is the quaternionic version of Theorem 2.5, and its

result is just as powerful. We prove it two ways, one is direct and the other makes

use of Lemma 3.3.

Theorem 3.5. For every U(H)-gain cycle, Cn = (Cn, U(H), ϕ), there exists a

T-unit gain cycle Ξ = (Cn,T, ϕ′) such that Ξ ∈ [Cn]ζ and ϕ(Cn) = [ϕ′(Ξ)] where

ϕ′(Ξ) = eiθ and ϕ′ : E → T is defined by

ϕ′(en,1) = ν∗ϕ1(Cn)ν

where ν ∈ U(H) such that ν∗ϕ1(Cn)ν = eiθ = ϕ′(Ξ) ∈ C for v1 ∈ Cn and

ϕ′(ei,i+1) = 1 for 0 ≤ i < n

Proof. (Direct proof) Let Cn be a U(H)-gain cycle. We define a switching function

ξ : V → U(H) as follows:

ξ(vi) =

1 i = 1(∏i−1
j=1 ϕ(ej,j+1)

)−1
i 6= 1

This is the exact same switching function as from Theorem 2.5, and it produces

a new U(H)-gain graph Φξ. Following the same steps from Theorem 2.5, we will

find that

ϕξ(ei,i+1) = 1 for 1 ≤ i < n

and ϕξ(en,1) = ϕ1(Cn)

We define ϕ1(Cn)C = Re(ϕ1(Cn)) + |Im(ϕ1(Cn))|i. By Lemma 1.7 ϕ1(Cn)C ∼
ϕ1(Cn), so there exists ν ∈ U(H) such that ϕ1(Cn)C = ν∗ϕ(Cn)ν. We define a

second switching function, ν, by

ν(vi) = ν for all vi.
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Note that the switching matrix for this function is Zν = νIn (which was why we

simply named it ν). The result of this switching function is a gain graph Φξν ,

with gain function

ϕξν(ei,i+1) = ν∗ν = 1 for 1 ≤ i < n

ϕξν(en,1) = ν∗ϕ1(Cn)ν ∈ C

Since we chose ν with the particular property ν∗ϕ1(Cn)ν = ϕ1(Cn)C ∈ C, we

have reduced the U(H)-gain graph to a T-gain graph. Additionally, ϕξν(Φξν) =

ϕξν(e12)ϕ
ξν(e23) . . . ϕ

ξν(en−1,n)ϕξν(en,1) = 1 · 1 · · · · · 1 · ν∗ϕ1(Cn)ν = ν∗ϕ1(Cn)ν.

The switched gain function ϕξν satisfies all results of the theorem.

(Alternate Proof) Let Cn be a U(H)-gain cycle. There exists eiθ ∈ T such that

ϕ1(Cn) ∼ eiθ. We construct a T-gain graph Ξ = (Cn,T, ϕ′), where ϕ′ is defined as

ϕ′(ei,i+1) = 1 for 0 ≤ i < n

ϕ′(en,1) = ν∗ϕ1(Cn)ν = eiθ

By construction, ϕ′(Ξ) = eiθ = ν∗ϕ1(Cn)ν, which implies ϕ′(Ξ) ∼ ϕ1(Cn). By

Lemma 3.3 ⇒ Ξ ∼ζ Cn.

This result shows us that any arbitrary U(H)-gain graph can be switched to

T-gain graph, with gains being similar in the sense of quaternions. The next result

is the quaternionic version of Theorem 2.6.

Theorem 3.6. Let Cn = (Cn, U(H), ϕ) and let ϕ(Cn) = [eiθ]. Then

σr(A(Cn)) =
{

2 cos
(θ + 2πj

n

)
| j ∈ {0, 1, . . . , n− 1}

}
and

σr(L(Cn)) =
{

2− 2 cos
(θ + 2πj

n

)
| j ∈ {0, 1, . . . , n− 1}

}
Proof. By the previous lemma, we can switch Cn to a T-unit gain graph Ξ with

ϕ(Cn) = [ϕ′(Ξ)] where ϕ′(Ξ) = eiθ ∈ C. Since this switch corresponds to a

unitary matrix, we know that σr(A(Cn)) = σr(A(Ξ)) and σr(L(Cn)) = σr(L(Ξ)).

By applying Theorem 2.6 to Ξ, the result is immediate.
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This result shows that given an arbitrary U(H)-gain cycle, we can determine

the eigenvalues of its adjacency and Laplacian matrices simple by looking at its

gain starting at vertex v1. The procedure goes as follows. We will first determine

the complex representative of the gain of the graph. Calculate the gain of the

cycle, ϕ1, starting from v1. The complex representative will be equal to Re(ϕ1) +

|Im(ϕ1)|i = eiθ. The associated eigenvalues can be determined from the formulas

in Theorem 3.6, using θ from the complex representative. This procedure, in

fact, works starting from any vertex vi, since they are all equivalent to the same

complex numbers e±iθ.

3.4 Example of Finding Eigenvalues

In the following example, we go through this eigenvalue procedure for a simple

4-vertex U(H)-gain graph. For comparison, we also go through the typical proce-

dure for finding eigenvalues using the complex representative of the quaternionic

matrix. Figure 3.1 shows the cycle graph that we will be examining more closely,

Φ = (C4, U(H), ϕ), along with its complex switched form Φξν .

Figure 3.1: Sample U(H)-gain graphs. On the left is the original, and on the right

is the switched complex version. Note that ϕ(Φ) = [e
3π
4
i].

27



The adjacency and Laplacian matrices are:

A(Φ) =


0 1√

2
(i + j) 0 1

− 1√
2
(i + j) 0 k 0

0 −k 0 i

1 0 −i 0



L(Φ) =


2 − 1√

2
(i + j) 0 −1

1√
2
(i + j) 2 −k 0

0 k 2 −i

−1 0 i 2


3.4.1 Method 1: Eigenvalues from the Gain of the Cycle

1. We begin by calculating the gain of the cycle starting at vertex v1.

ϕ1(c) =
∏

α=1...4

ϕ(eα)

= ϕ(e12) · ϕ(e23) · ϕ(e34) · ϕ(e41)

=
1√
2

(i + j) · k · i · 1

=
1√
2

(i + j) · j

=
1√
2

(k− 1)

ϕ1(c) = − 1√
2

(1− k)

So, ϕ(Φ) = [− 1√
2
(1− k)].

2. Next, we find the complex representative for the equivalence class [eiθ] =

[− 1√
2
(1− k)].

eiθ = Re
(
− 1√

2
(1− k)

)
+
∣∣∣Im(− 1√

2
(1− k)

)∣∣∣i
= − 1√

2
+

1√
2
k

eiθ = − 1√
2

(1− i)

So θ = arctan
(− 1√

2
1√
2

)
= arctan (−1) = 3π

4
.
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3. We calculate the right eigenvalues for the adjacency matrix according to the

formula in Theorem 3.6.

σr(A(Φ)) =
{

2 cos
( 3π

4
+ 2πj

4

)
| j ∈ {0, 1, . . . , n− 1}

}
=
{

2 cos
(3π

16

)
, 2 cos

(11π

16

)
, 2 cos

(19π

16

)
, 2 cos

(27π

16

)}
=
{
±

√
2 +

√
2−
√

2,±

√
2−

√
2−
√

2
}

=
{
±

√
2±

√
2−
√

2
}

4. We calculate the right eigenvalues for the Laplacian matrix according to the

formula in Theorem 3.6

σr(L(Φ)) =
{

2− 2 cos
( 3π

4
+ 2πj

4

)
| j ∈ {0, 1, . . . , n− 1}

}
=
{

2∓

√
2±

√
2−
√

2
}

3.4.2 Method 2: Eigenvalues from the Complex Represen-
tative using MATLAB

The previous section calculated eigenvalues from the theorem proven earlier. Here

we show how the same eigenvalues can be obtained from the complex represen-

tatives of the corresponding adjacency and Laplacian matrices. Note that since

both matrices are Hermitian, we know their right eigenvalues will be real. The

right eigenvalues of the complex representative will be all of the right eigenval-

ues in C. Since they are all real, determining the eigenvalues of the complex

representative will yield the real right eigenvalues of the quaternionic matrix with

multiplicity two. A MATLAB code was written to expand the quaternionic matrix

into its complex representative, which then found the eigenvalues of that matrix.

We begin by finding the right eigenvalues of the adjacency matrix.

1. We can decompose A(Φ) as

A(Φ) = A =


0 1√

2
i 0 1

− 1√
2
i 0 0 0

0 0 0 i

1 0 −i 0

+


0 1√

2
0 1

− 1√
2

0 i 0

0 −i 0 0

1 0 0 0

 j = A1 + A2j
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2. The complex representative of A will be

χA =

 A1 A2

−A2 A1

 =



0 1√
2
i 0 1 0 1√

2
0 1

− 1√
2
i 0 0 0 − 1√

2
0 i 0

0 0 0 i 0 −i 0 0

1 0 −i 0 1 0 0 0

0 − 1√
2

0 −1 0 − 1√
2
i 0 1

1√
2

0 i 0 1√
2
i 0 0 0

0 −i 0 0 0 0 0 −i

−1 0 0 0 1 0 i 0


3. From MATLAB, the eigenvalues of χA will give us

σ(χA) = σr(A(Φ)) =
{
± 1.111,±1.663

}
which do, in fact, correspond to the eigenvalues obtained from the previous

section.

Next, we will find the right eigenvalues of the Laplacian matrix.

1. We can decompose L(Φ) as

L(Φ) = L =


2 − 1√

2
i 0 −1

1√
2
i 2 0 0

0 0 2 −i

−1 0 i 2

+


0 − 1√

2
0 −1

1√
2

0 −i 0

0 i 0 0

−1 0 0 0

 j = L1 + L2j

2. The complex representative of L will be

χL =

 L1 L2

−L2 L1

 =



2 − 1√
2
i 0 −1 0 − 1√

2
0 −1

1√
2
i 2 0 0 1√

2
0 −i 0

0 0 2 −i 0 i 0 0

−1 0 i 2 −1 0 0 0

0 1√
2

0 1 2 1√
2
i 0 −1

− 1√
2

0 −i 0 − 1√
2
i 2 0 0

0 i 0 0 0 0 2 i

1 0 0 0 −1 0 −i 2


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3. From MATLAB, the eigenvalues of χL will give us

σ(χL) = σr(L(Φ)) =
{

0.337, 0.889, 3.111, 3.663
}

which do, in fact, correspond to the eigenvalues obtained from the previous

section.

The right eigenvalues for these matrices can certainly be found using this

method, implying that Theorem 3.6 is unnecessary. The following lists several

pros to using the equations from Theorem 3.6.

1. The equations will yield exact results; the MATLAB code will only yield

approximations. There are, of course, computational methods for finding

exact eigenvalues of the complex representative, but they fail because of the

following.

2. The computational difficulty of finding eigenvalues of the complex represen-

tative quickly outgrows the computational difficulty of using the equations.

Given an n-vertex cycle graph, the equations require a product of n gains,

whereas the complex representative will require finding the eigenvalues of a

2n× 2n matrix, which is much more difficult.

3. Theorem 3.6 gives us an exact reasoning behind the values of the eigenvalues.

The complex representative method does not.
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