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While quantum computers are naturally well-suited to implementing linear operations, it is less
clear how to implement nonlinear operations on quantum computers. However, nonlinear sub-
routines may prove key to a range of applications of quantum computing from solving nonlinear
equations to data processing and quantum machine learning. Here we develop algorithms for imple-
menting nonlinear transformations of input quantum states. Our algorithms are framed around the
concept of a weighted state, a mathematical entity describing the output of an operational procedure
involving both quantum circuits and classical post-processing.

I. INTRODUCTION

Quantum computers are naturally adept at perform-
ing linear operations because quantum mechanics is in-
herently linear. That is, the time evolution of a quantum
system is governed by the Schrödinger equation, a linear
equation. Or, equivalently, quantum states evolve under
unitary operations which are necessarily linear. However,
to exploit the full potential of quantum computing, we
need to be able to also twist the arm of quantum devices
into implementing nonlinear operations.

Nonlinear subroutines are likely to play a key role in a
range of quantum algorithms. For example, the ability to
efficiently implement nonlinear operations would open up
new methods for solving nonlinear equations on quantum
hardware, with applications in areas from fluid dynam-
ics to finance. Alternatively, nonlinear subroutines could
prove valuable for developing new techniques for error
mitigation by providing a means of amplifying a signal
in the presence of background noise. Finally, there is
much excitement currently about the potential of quan-
tum neural networks. However, classical neural networks
inherit much of their power from the use of nonlinear acti-
vation functions. Replicating this on quantum hardware
necessitates the ability to implement nonlinear quantum
operations.

While quantum mechanics is fundamentally linear,
quantum systems often appear to evolve nonlinearly.
These apparent nonlinearities are typically induced
through measurements and coarsegraining. In the con-
text of quantum computing, in addition to these tools,
nonlinear effects can also be introduced using classical
post-processing and by collectively manipulating multi-
ple copies of a given input state.

There is a growing body of research into developing
new methods for introducing nonlinearities into quantum
algorithms. In the context of quantum machine learn-
ing, convolutional [1] or dissipative [2] quantum neural
networks, that disregard qubits as the network grows,
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have been proposed. While these methods do introduce
nonlinearities, the exact form of the nonlinearity is not
readily controllable. Algorithms for computing specific
nonlinear functions of the elements of a quantum state
have been proposed in the context of solving nonlinear
equations [3] and studying chaotic systems [4, 5]. In this
paper we tackle the more general problem of implement-
ing nonlinear transformations of quantum states. This
problem has been previously explored using block encod-
ing methodologies [6, 7].

In this paper we introduce a new approach for prepar-
ing nonlinear functions of quantum states, using what
we call weighted states. These are matrices, describing
the output of a quantum instrument, that act like den-
sity operators but need not be normalized nor Hermitian.
The notion of weighted states is a generalization that in-
cludes conditional and marginal states as special cases
and shares similarities with virtual state distillation [8]
and state broadcasting [9–11] in the sense that these en-
tities allow one to reconstruct expectation values with-
out explicitly preparing the state in a conventional sense.
We show that through an appropriate choice of quan-
tum instrument and its inputs it is possible to construct
weighted states corresponding to a nonlinear transfor-
mation of a density matrix. In particular, our algorithms
may be used to implement arbitrary polynomials of the
amplitudes of a set of pure input states.

The outline of the paper is as follows. In Subsec-
tion II A we formally define the functionals of quan-
tum states that we aim to implement and in Subsec-
tion II B we define the notion of weighted states. In
Subsection II C we present an algorithm to implement
the Hadamard product of states, in Subsection II D we
present an algorithm to implement the generalized trans-
pose of an input density operator, and in Subsection II E
we describe an algorithm that can be used to prepare
a linear combination of products of density matrices.
We use these algorithms to show how one can imple-
ment more general polynomial functions of input quan-
tum states. In Section III we analyze the sampling com-
plexity associated with the weighted state approach. We
conclude in Section IV.
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II. WEIGHTED STATES

A. Statement of problem

Given a set of density operators as input ρin = ρ(0) ⊗
· · · ⊗ ρ(K−1), we are interested in preparing weighted
states (to be explained in detail later) of the form

ρin → τ̃ =

dout−1∑

i,j=0

f(vρin)i,j |i〉〈j| , (1)

where vρin is the vector containing all entries of the in-
put density operators in the computational basis, i.e.

vρin = (ρ
(0)
0,0, ρ

(0)
0,1, ..., ρ

(K−1)
d,d ) with ρ

(k)
i,j = 〈i|ρ(k)|j〉, and

f : Ckd2 → Cd2out is a multilinear function of its argu-
ments. Here d is the Hilbert space dimension1 of the
individual inputs ρ(k) and dout is the Hilbert space di-
mensions of the output system τ̃ .

Crucially, if ρin includes multiple copies of the same
state ρ, and we consider f to be a function of the unique
input states, then the transformation functions will in
general be nonlinear in the elements of ρ. For example,
in the case where the input states are all identical, i.e.
ρin = ρ⊗K , we can consider the transformation

ρ→ τ̃ =

dout−1∑

i,j=0

g(uρ)i,j |i〉〈j| , (2)

where uρ = (ρ0,0, ρ0,1, ..., ρd,d) is now the vector contain-
ing all entries of ρ in the computational basis, and the

transformation functions g : Cd2 → Cd2out are in general
nonlinear.

Note that this operation may depend on the chosen
computational basis. In general, τ̃ is not normalized,
positive definite, and might not even be Hermitian. We
use tilde to indicate such quantum objects that are not
proper quantum states that exist on a register of a quan-
tum computer.

A special case is pure states. In this case we assume as
input a set of pure states |ψin〉 = |ψ(0)〉 ⊗ · · · ⊗ |ψ(K−1)〉,
and we are interested in transformations of the form

|ψin〉 → |φ̃〉 =
∑

i

h(vψin)i |i〉 , (3)

where vψin is the vector containing all amplitudes of the
input states in the computational basis, i.e. vψin =

(ψ
(0)
0 , ψ

(0)
1 , ..., ψ

(K−1)
din

) where ψ
(k)
i = 〈i|ψ(k)〉, and h :

Ckd → Cdout is a multilinear function of its arguments.
Again, if |ψin〉 includes multiple copies of the same state
|ψ〉, h may be nonlinear with respect to the amplitudes
of |ψ〉.

1 The general framework allows for input systems with different
Hilbert space dimensions, however we won’t be considering such
cases in this work.

B. General framework

In this section, we introduce the concept of ‘weighted
states’ which provides the backbone of all the algorithms
presented later on. To motivate this concept we start by
emphasizing that one only ever has access to quantum
states through measurement outcomes. Thus, suppose
we are interested in the outcome of measurements on the
state τ , it is not strictly necessary to prepare τ , rather it
suffices to propose an operational strategy for calculating
〈O〉τ = Tr[τO] for any measurement operator O.

When the state we are interested in is a nonlinear func-
tional of the input state as in Eq. (2), we cannot strictly
prepare it unless it happens to be a proper quantum
state, i.e. unless τ̃ = τ is positive semi-definite, Hermi-
tian matrix with unit trace. Instead, we first prepare a
quantum state in an extended Hilbert space composed of
Ancilla register (A) and an Input register (I). As shown
in Fig. 1a), the initial composite state of the registers

σfA ⊗ ρinI evolves unitarily under Uf such that the final

state is ρout = Uf (σfA ⊗ ρinI )Uf†. Here σf is the ancilla
state to be chosen as part of the algorithm. We then
regroup the registers of ρout into a system (S), an en-
vironment (E), and the garbage (G). Finally, we pick a
measurement operator Mf on the environment such that
the following is satisfied:

Tr[τ̃O] = TrSEG[ρout(O ⊗Mf
E ⊗ IG)] ∀ O . (4)

In other words, we map the expectation value of any
system operator O in the (possibly unphysical) state τ̃
to the expectation value of the operator O⊗Mf⊗I in the
composite state ρout. Since Eq. (4) is true for any system
operator O, we can also express the weighted state as

τ̃ = TrEG(ρout(IS ⊗Mf
E ⊗ IG)) . (5)

We note that the measurement of O need not be made
straightaway, rather the weighted state τ̃ can be used
as the input to another algorithm and so may be further
processed by additional subroutines before measurement.

Alternatively, one can think of weighted states in terms
of quantum instruments which are quantum operations
with both classical and quantum outputs [12]. Any quan-
tum instrument can be realized by applying a joint uni-
tary transformation on the input system plus an ancilla,
followed by a projective measurement on part of the re-
sulting joint system as in Fig. 1b). We indicate such
an instrument2 as I(σf , Uf ,Mf ). In general, the clas-
sical and quantum outputs are correlated. If the j’th

2 Clearly, there is a degeneracy in the choice of the set
{σf , Uf ,Mf} and different choices can result in the same in-
strument. One could eliminate this degeneracy by adopting the
convention that Mf is diagonal and σf = |0〉〈0|, which is al-
ways possible as the unitary diagonalizing Mf and the one that
prepares the purification of σf can always be absorbed into Uf .
However, we believe that this convention makes it harder to build
intuition about the algorithms we describe later in the paper.
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FIG. 1. Weighted state framework. Here we illustrate two equivalent ways of interpreting weighted states. a) A weighted

state τ̃ = TrEG(ρout(IS ⊗Mf
E ⊗ IG)) is equivalent to the output of a composite state ρout after the measurement Mf ⊗ I on

the environment and garbage auxiliary systems. b) A weighted state τ̃ =
∑
j λjEj(ρ

in) is the output of a quantum instrument
where conditional on measuring the j’th output on the environment register E, the quantum output in register S is weighted
by λj .

possible measurement outcome λj is observed in a real-
ization of the measurement of Mf , the conditional quan-
tum state on the S register of the joint system is given

by Ej(ρin)/Tr(Ej(ρin)), where Ej(�I) = TrEG(Uf (σfA ⊗
�I)Uf†(IS ⊗ |λj〉〈λj |E ⊗ IG)) is a completely positive

trace-non-increasing map and TrS(Ej(ρin)) is the prob-
ability pj of observing said outcome [13]. Since proba-
bilities add up to one, E =

∑
j Ej is completely positive

and trace preserving and E(ρin) = TrEG(ρout) describes
the marginal state on the S register. What we refer to
as the weighted state can be expressed as

τ̃ =
∑

j

λjpj
Ej(ρin)

Tr(Ej(ρin))
=
∑

j

λjEj(ρin) . (6)

In this manner, the weighted state is obtained by weight-
ing the quantum outcomes of the quantum instrument
with its classical outcomes. In practice this weighting is
implemented in post-processing. It is evident that condi-
tional and marginal states are special cases of weighted
states whereby the measurement operator Mf is a pro-
jector and identity, respectively. In many ways, one can
think of the use of conditional states as being the analog
of rejection sampling whereas weighted states are analo-
gous to importance sampling.

The goal is then to find a quantum instrument
I(σf , Uf ,Mf ) that implements the transformation of
Eq. (1) for a given function f for all inputs ρin. First,
let us assume that Mf is a normal operator and hence
can be diagonalized by a unitary. A subsequent mea-
surement in the computational basis, with outcome j, is
interpreted as the measurement of λj , the j’th eigenvalue
of Mf . The physical states Ej(ρin)/Tr(Ej(ρin)) can then
be used, together with the classical outputs λj of the
instrument, to emulate any quantum computation that

involves the (possibly unphysical) state τ̃ .

The method described in the previous paragraph as-
sumes Mf is a normal operator. More generally, one
can emulate an arbitrary operator Mf by randomizing
over quantum instruments. Let Mf,(k) be a normal op-
erator corresponding to the k’th instrument and qk be
the probability with which this instrument is sampled.
Then the net effect of using a randomized instrument
is captured by Mf =

∑
k qkM

f,(k) in Eqs. (4,5). Note
that, in principle, any operator can be represented this
way as Mf = (1/2)(Mf + Mf†) + (1/2)(Mf − Mf†),
where both the Hermitian and skew-Hermitian parts of
M are normal (but other decompositions may prove to be
more efficient). In Appendix. A 4 we show that this ran-
domization is not necessary and in fact a single quantum
instrument can always be constructed that implements
the transformation that a fictitious instrument with an
arbitrary non-normal Mf would. Hence, unless stated
otherwise, we will henceforth assume Mf is normal.

Finally, it is important to note that ρin can itself be a
weighted state and Eqs. (5,6) still hold in this case. Thus
algorithms implementing basic nonlinear transformations
can be concatenated to prepare a large class of weighted
states of the form Eqs. (1, 3) corresponding to complex
nonlinear transformations of input states. Below we will
describe three such basic algorithms. The first algorithm
multiplies two input state density operators entry-wise in
the computational basis (Hadamard product), the second
implements a generalization of the transpose operation,
and the third algorithm outputs polynomials of input
density matrices.

In the rest of the paper we will drop the tilde on τ̃
as there is no need to make a distinction between phys-
ical and weighted states in the framework. We will also
drop the superscript f and let {σf , Uf ,Mf}→ {σ, U,M}
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for brevity. It is always to be understood that this set
depends on f .

C. Quantum Hadamard Product (QHP)

We define the Quantum Hadamard Product (QHP) of
two states ρ(0) and ρ(1) as

ρ(0) � ρ(1) =
∑

ij

ρ
(0)
ij ρ

(1)
ij |i〉〈j| . (7)

That is, the matrix elements of the QHP in the compu-
tational basis are the product of the matrix elements of
the input density operators.

In Fig. 2 we present a circuit for implementing the
Hadamard product. The output state after applying the
ladder of CNOT gates, U = CNOT⊗n, is

ρout =
∑

i0,j0,i1,j1

ρ
(0)
i0j0

ρ
(1)
i1j1
|i0, i0 ⊕ i1〉〈j0, j0 ⊕ j1| (8)

The measurement operator is M = |0〉〈0| and there is
no garbage register. It is straightforward to verify that
the weighted state is the desired Quantum Hadamard
Product, that is we have

τ = TrEG(ρout(IS ⊗M)) = ρ(0) � ρ(1) . (9)

Note that M is a projector. As such it amounts to per-
forming a post-selection. In that viewpoint, one would
obtain the normalized state ρ(0) � ρ(1)/Tr[ρ(0) � ρ(1)]
whenever the second register is measured in the all 0’s
state. Then one measures the observable O in this state.
This process is repeated until enough statistics is col-
lected. Finally, one would have to multiply the outcome
with the normalization factor Tr[ρ(0) � ρ(1)] which can
be estimated by the relative frequency of the success of
post-selection. Thus the weighted state formalism in-
cludes methods based on post-selection as a special case,
whereby M is proportional to a projector.

In the special case where the inputs to QHP are pure
states, i.e. ρ(0) =

∣∣ψ(0)
〉〈
ψ(0)

∣∣ and ρ(1) =
∣∣ψ(1)

〉〈
ψ(1)

∣∣,
the QHP transforms them into another pure state given
by

|φ〉 = |ψ(0) � ψ(1)〉 ≡
∑

i

ψ
(0)
i ψ

(1)
i |i〉 . (10)

Weighted states |ψ(0) � ψ(1) � . . . ψ(K−1)〉 that are the
Hadamard product of K states can be prepared by using
the QHP algorithm iteratively as shown in Fig. 3. If the
input states are defined on n qubits, this algorithm can
be implemented using 2n qubits, independent of K, by
resetting and reusing qubits [14]. Of particular interest
is the potential to use iterative applications of QHP to
generate powers of a state, that is to prepare

|ψ � ψ � · · · � ψ︸ ︷︷ ︸
p times

〉 ≡ |ψp〉 ≡
∑

i

ψpi |i〉 . (11)

FIG. 2. Quantum Hadamard Product (QHP). Here we
show the depth 1 circuit to implement QHP. Note that the
CNOT gates act on all pairs of qubits.

More generally, using the circuit in Fig. 3 with different
input states we can prepare weighted states whose ampli-
tudes are products of the amplitudes of different states
such as

∑

i

∏

j

(
ψ
(j)
i

)pj
|i〉 . (12)

Such products may be used as building blocks for prepar-
ing arbitrary polynomial functions.

If we treat ρ(0) → σ as part of the ancilla register (A)
and only ρ(1) → ρ as the input (I) of the quantum in-
strument, then the same quantum circuit as QHP shown
in Fig. 2 implements the following linear transformation

ρ→ σ � ρ =
∑

ij

σijρij |i〉〈j| . (13)

The only difference between the two quantum instru-
ments is the interpretation of what constitutes the input
of the instrument.

D. Generalized Quantum Transpose (GQT)

In this section we present an algorithm for implement-
ing a transformation related to the QHP that we call the
Generalized Quantum Transpose (GQT). Given an input
state ρ and ancillary state σ, the GQT is defined as

ρ(T )
σ = σ � ρT . (14)

That is, the output of GQT is the transpose of the in-
put density operator ρ in the computational basis, with
the elements of ρT weighted by the elements of σ on an
element-by-element basis. When σ is chosen to be the
plus state σ = |+〉〈+| with |+〉 = 1√

d

∑
i |i〉, the output

is the transpose of ρ up to the dimension of the input,

that is, ρ
(T )
|+〉〈+| = 1

dρ
T . In the special case of pure input

states, i.e. ρ = |ψ〉〈ψ|, the GQT implements a weighted
complex conjugation operation such that the output is
σ � |ψ∗〉〈ψ∗|.

In Fig. 4 we present a circuit for implementing the
GQT. Specifically, the weighted state prepared by this
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FIG. 3. Iterated Quantum Hadamard Product. The circuit consists of n− 1 repetitions of the QHP subroutine shown in
Fig. 2. This circuit can be used with ρ(1) = ρ(2) = ... = ρ(k) = |ψ〉〈ψ| for preparing a quantum state

∑
i ψ

k
i |i〉 in which all the

amplitudes in the computational basis are raised to some power k. We note that one could also reset alternating qubits. These
two instruments would produce the same final weighted state on an ideal device but may perform differently in the presence of
noise [14].

FIG. 4. Generalized Quantum Transpose (GQT). Here
we show the depth 3 circuit to implement GQT. The pur-
ple box indicates a SWAP measurement (for breakdown see
Fig. 5).

circuit can be shown to be:

ρout =
∑

ii′jj′

σijρi′j′ |iij〉〈i′i′j′| (15)

τ̃ = Tr2,3(ρout(I⊗ SWAP)) (16)

=
∑

iji′j′

σijρi′j′ 〈i′j′|SWAP |ij〉 |i〉〈i′| (17)

=
∑

ij

σijρji |i〉〈j| = σ � ρT , (18)

where the trace in second equation is taken over the last
two registers. Note that the Bell basis states are eigen-
states of the SWAP operator with eigenvalues ±1. Hence
the SWAP measurement on the bottom two registers can
be realized with a depth two quantum circuit as seen in
Fig. 5 [15].

GQT can be used in tandem with the other algorithms
described in this work to enlarge the set of functions f
that can be implemented. Although GQT, in its current
formulation, implements a linear transformation, if the
ancilla state is chosen to be ρ, or GQT is applied iter-
atively taking multiple copies of the state ρ as inputs,
the resulting transformation will be nonlinear in ρ. It
is worth noting that GQT can be applied to a subsys-

FIG. 5. Swap measurement. The implementation of the
SWAP measurement with a circuit of depth 2 [15]. The read-
outs are x = x1, . . . , xn and y = y1, . . . , yn, and x · y =
x1y1 + · · ·+ xnyn.

tem of a larger system to implement a partial transpose.
Thus GQT could be leveraged to witness entanglement
in mixed quantum states [16, 17].

E. Quantum State Polynomial (QSP)

In this section we present an algorithm that takes as in-
put two states ρ(0) and ρ(1) and prepares weighted states

τ̃ =α00ρ
(0) + α11ρ

(1)

+ α01ρ
(0)ρ(1) + α10ρ

(1)ρ(0) . (19)

Note that the weighted state τ is a multilinear polynomial
of its two inputs ρ(0,1). Consider the algorithm in Fig. 6.
Specifically, the pre-measurement output of the circuit is

ρout =
∑

ii′jj′

σ00ρ
(0)
ij ρ

(1)
i′j′ |i0j〉〈i′0j′|+ σ01ρ

(0)
ij ρ

(1)
i′j′ |i0j〉〈j′1i′|

+σ10ρ
(0)
ij ρ

(1)
i′j′ |j1i〉〈i′0j′|+ σ11ρ

(0)
ij ρ

(1)
i′j′ |j1i〉〈j′1i′| .

(20)
Performing the measurement M we generate the
weighted state

τ̃ =σ00M00 Tr(ρ(1))ρ(0) + σ11M11 Tr(ρ(0))ρ(1)

+σ01M10ρ
(0)ρ(1) + σ10M01ρ

(1)ρ(0) .
(21)

Hence by appropriately choosing the initial state σ and
measurement operator M it is possible to produce states
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FIG. 6. Quantum State Polynomial (QSP). Here we
show the circuit to implement QSP. The controlled SWAP
gate can be implemented with three Toffoli gates. The final
swap does not need to be implemented but rather is included
to match the register labelling convention chosen in Fig. 1.

of the form Eq. (19) as claimed. More concretely, inter-
preting the coefficients αij as entries of a matrix α we
require that

α = σ �MT � γin . (22)

Here γin is a matrix where the off-diagonal elements are
input independent with γin01 = γin10 = 1 and the diagonal
entries depend on the input states with γin00 = Tr(ρ(1))
and γin11 = Tr(ρ(0)).

Multilinear polynomials of more than two input states,
generalizing Eq. (19), can be obtained by concatenating
this algorithm. However, only a limited subset of all mul-
tilinear polynomials can be generated this way. In order
to obtain any arbitrary multilinear polynomial, one can
either randomize over instruments, see Appendix A 4, or
forego concatenation and implement the transformation
directly with an instrument that takes all inputs at once,
see Appendix B 1.

A number of interesting families of weighted states may
be generated with QSP when σ is a physical density op-
erator and M is an Hermitian observable. Here we list
several pertinent examples.

Mixtures: One does not need weighted states to pre-
pare the mixture of two given states but here we show
how that scheme fits in the larger framework of weighted
states. Here we want τ̃ = pρ(0) + (1 − p)ρ(1) for some

probability 0 < p < 1. This corresponds to α =
( p 0
0 1−p

)
.

We can achieve this by choosing σA =
( p 0
0 1−p

)
and

M = I =
( 1/Tr(ρ(1)) 0

0 1/Tr(ρ(0))

)
. When the inputs are

physical states with unit trace, the measurement M is
just the identity operator and so the environment regis-
ter may simply be traced out.

Anti-commutator: The weighted state τ̃ =
{ρ(0), ρ(1)} = ρ(0)ρ(1)+ρ(1)ρ(0) corresponds to α =

(
0 1
1 0

)
.

This may be prepared using σ = |+〉〈+| = (1/2)
(
1 1
1 1

)

and M = 2X = 2
(
0 1
1 0

)
. We note that one-half of

the anti-commutator with identical inputs ρ is the
weighted state τ̃ = ρ2. In this special case, the algorithm
reduces to established algorithms for computing Renyi
entropies [14] and virtual state distillation [8, 18].

Commutator: The weighted state τ̃ = [ρ(0), ρ(1)] =
(ρ(0)ρ(1) − ρ(1)ρ(0)) corresponds to α =

(
0 1
−1 0

)
. This

may be prepared with σ = |+〉〈+| = (1/2)
(
1 1
1 1

)
and M =

2iY = 2
(
0 −1
1 0

)
.

Linear Combinations of Pure States: A particularly
promising application of the QSP algorithm is to prepare
linear combinations of pure quantum states. In this case
the weighted state is τ = |ψ〉〈ψ| where |ψ〉 = α0|ψ(0)〉 +
α1|ψ(1)〉, corresponding to

α =

(
|α0|2 α0α

∗
1

〈ψ0|ψ1〉
α1α

∗
0

〈ψ1|ψ0〉 |α1|2

)
. (23)

Note that unlike previous algorithms we presented, in
this case, as α depends on the overlap between the input
states, the functional form of g in Eq. (3) depends on the
input state. In particular, one needs to know in advance,
or estimate, the overlaps between the input states in or-
der to specify the quantum instrument that prepares the
desired weighted state.

We have freedom in how to pick the initial state σ and
measurement M . Suppose we take σ to be the arbitrary
pure state σ = |β〉〈β| with |β〉 = β0|0〉 + β1|1〉 then we
need

M =




|α0|2
|β0|2〈ψ1|ψ1〉

α1α
∗
0

β1β∗0 〈ψ1|ψ0〉
α0α

∗
1

β0β∗1 〈ψ0|ψ1〉
|α1|2

|β1|2〈ψ0|ψ0〉


 . (24)

Note that M is a Hermitian operator. In Section III
we discuss how to choose |β〉 in order to minimize the
sampling complexity.

We note that the denominator for the off diagonal ele-
ments in Eq. (24) will vanish if |ψ0〉 and |ψ1〉 are orthog-
onal. Even if the denominator does not vanish, for close
to orthogonal states it can become very small. As we will
demonstrate in the error analysis in Section III this leads
to precision issues. First, the overlap 〈ψ0|ψ1〉 will have
to be estimated with high precision. Second, even if this
overlap is known exactly the eigenvalues of M , i.e. the
weights, will be large. This in turn increases the sampling
complexity. Hence, this method is not recommended for
preparing linear combinations of orthogonal, or close to
orthogonal, states. In Appendix B we discuss alternative
methods for preparing such combinations.

One can prepare linear combinations of many states
by iterating this method for preparing the linear combi-
nation of a pair of states. This ability to take the linear
combinations of states is expected to prove valuable for
a number of applications since it can be used as a primi-
tive to prepare arbitrary polynomials of quantum states.
In particular, by taking the linear combination of powers
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of quantum states (generated via the QHP algorithm)
one may approximately implement any function of the
quantum state that may be expanded as a power series
as

|ψ〉 → |g(ψ)〉 =
∑

i

g(ψi) |i〉 (25)

where g(ψi) =
∑
k αk(ψi)

k. For example, this could be
used to approximately implement the reciprocal opera-
tion g(x) = 1

x to amplify basis states with small ampli-
tudes. Or, one could potentially use this method to im-
plement the g(x) = tanh(x) activation function used to
introduce nonlinearities into neural networks. More gen-
erally the QSP, GQT, and QHP may be concatenated
to implement complex nonlinear transformations of the
form

|ψ〉 → |h(ψ)〉 =
∑

ikl

αkl(ψi)
k(ψ∗i )l |i〉 . (26)

Physically measurements are associated with normal
operators. If we require M to be a normal operator in
the QSP circuit, then it follows from Eq. (22) that not
all α matrices can be obtained. In Appendix D we pro-
vide a detailed classification of the classes of weighted
states that can be realised when M is a normal opera-
tor. To go beyond, as previously noted, we can express
arbitrary operators as sums of normal operators Nl via
M =

∑
l clNl. The right hand side of Eq. (4) now has a

summation, which means that we need to operate mul-
tiple quantum instruments to obtain the weighted state.
As an example of weighted states that can only be pre-
pared via QSP through such means consider products of
density matrices, i.e. τ = ρ(0)ρ(1).

III. SAMPLING COMPLEXITY ANALYSIS

We are interested in the expectation value of an Her-
mitian operator O in a weighted state τ , i.e. Tr[τO]. Due
to Eq. (4) this quantity is nothing but the expectation
value of O⊗M⊗I in the state ρout and can be estimated
by repeatedly running the quantum instrument of Fig. 1
and then measuring the operator O on the quantum out-
put, i.e. the system register. This estimator takes the
form

Ô =
1

s

s∑

i

λm(i)µo(i) (27)

where λm(i) and µo(i) are the random outcomes of M
and O measurements at the i’th run of the circuit, re-
spectively, and s is the total number of runs. Note that

Ô is an unbiased estimator since it estimates a quantum
expectation value in the standard way:

E[Ô] = Tr[ρout(O ⊗M ⊗ I)] = Tr[τO] (28)

where E[·] denotes the expectation value.

The variance of Ô is

Var(Ô) =
1

s

(
Tr[ρout(O ⊗M ⊗ I)2]− Tr[τO]2

)
. (29)

Note that, in general, the variance of an observable can
not be expressed in terms of the weighted state τ alone.
Consequently, two instruments that implement the same
transformation and hence prepare the same weighted
state, can result in estimators with different variances.
Since variance is inversely proportional to sampling com-
plexity we would like to find instruments that minimize
it. As is clear from Eq. (29), the variance manifestly de-
pends on the measurement O performed on the weighted
state and so to compare the sampling complexity of dif-
ferent instruments it is desirable to derive an operator
independent bound on the variance. To do so we note
that the variance of the product of random variables may
be bounded [19] as

Var(X̂Y ) ≤ 2Var(X̂)||Y ||2∞ + 2〈X〉2Var(Ŷ ) . (30)

Assuming that ||O||∞ ≤ 1, it follows that

Var(Ô) ≤ 2 Tr[ρout(I⊗M ⊗ I)2]

s
. (31)

We use Eq. (29) (Eq. (31)) to compute (bound) the num-
ber of samples needed for QHP, GQT, and QSP algo-
rithms in order to achieve a desired precision. Here we
restrict our scope to weighted states that are prepared
using quantum instruments whose inputs are physical
states3 and for which M is a Hermitian operator. We
also suppose that the system observable O is Hermitian.
Here we summarise our findings. The more detailed and
general analysis can be found in Appendix. C.

A. Quantum Hadamard Product

For the Quantum Hadamard Product algorithm the
variance takes the form

Var[Ô] =
1

s
(Tr[τO2]− Tr[τO]2) (32)

Thus the variance has the form of a standard quan-
tum observable, except that in this case τ may be a
sub-normalized state with Tr[τ ] ≤ 1. This expression,
Eq. (32), also holds when the QHP circuit is applied it-
eratively to generate higher order powers/polynomials of
the input states.

3 Note that if the input states are weighted states themselves, one
needs to take into account the quantum instruments associated
with them in order to analyze the variance. This can be achieved
by treating the concatenated quantum instruments as a single
quantum instrument with more registers.
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(Ô

)

√
Var(Ô)
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FIG. 7. Error analysis for powers of states. Here we plot

the absolute sampling error

√
Var(Ô) (solid), the analytically

computed expectation value E(Ô) (dotted) and the relative

error

√
Var(Ô)/E(Ô) (dashed) after running the powers of

state circuit for the normalized states |ψ〉 ∝
∑
j ψj |j〉, with

the functions ψj indicated in the legend, as a function of power
k. In all cases we consider an n = 6 qubit state |ψ〉, we
measure the all zero projector O = |0〉〈0| and suppose s =
1000 shots are used.

In Fig. 7 we plot the absolute and relative sampling
errors when applying the QHP algorithm for generating
increasing powers of different input states. While the ad-
ditive error (solid lines) remains approximately constant
as k is increased, the relative error

Var(Ô)

Tr[τO]2
=

1

s

(
Tr[τO2]

Tr[τO]2
− 1

)
(33)

typically increases dramatically with power (dashed
lines). This follows from the fact that the amplitudes of
|ψ〉 are typically less than 1 (for proper quantum states)
and so Tr[τ ] =

∑
i |ψi|2k typically decreases exponen-

tially with k (dotted lines).

B. Generalized Quantum Transpose

For the Generalized Quantum Transpose circuit shown
in Fig. 2, the variance is given by

Var(Ô) =
1

s

(
Tr
[
D(σ)O2

]
− Tr

[(
σ � ρT

)
O
]2)

(34)
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|α0|2
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|β
0
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r = 0.6
r = 0.8
r = 1

FIG. 8. Optimum choice in β parameter. We plot βopt
0 ,

the optimum β0 parameter that minimises BVar, the upper
bound on the error for the linear combinations of states cir-
cuit, as a function of |α0|2 for different overlaps r.

where D(σ) is the dephased version of the ancilla state
σ, i.e. D(σ) =

∑
i σii|i〉〈i|, and we used the fact that

SWAP2 = I.
We recall that the Generalized Quantum Transpose

may be used to compute expectation values of the trans-
pose of the state ρ if σ is chosen to be the plus state
|+〉〈+| and the observable dO is measured. The fac-
tor of d compensates for the normalization factor in

ρ
(T )
|+〉〈+| = 1

dρ
T . While this is one possible use of GQT, in

this case the variance is given by

Var(Ô) =
1

s

(
dTr

[
O2
]
− Tr

[
ρTO

]2)
, (35)

such that the sampling error scales with d and so expo-
nentially in the number of qubits of the input system.
Thus for large scale problems GQT is not efficient. How-
ever, if GQT is used to implement the partial transpose
to a ds dimensional subsystem then the variance will scale
as ds. Hence even for large scale problems it should be
possible to implement the partial transpose of a constant
sized subsystem.

C. Linear combination of states

Here we focus on analysing the sampling complexity
of the linear combination of states algorithm - see Ap-
pendix C for a presentation of the errors in the gen-
eral case of the quantum state polynomial circuit. Using
Eq. (31), one can show that for the linear combination of
states algorithm the variance may be bounded as

Var(Ô) ≤ 2

s

(
|α0|2

( |α0|2
|β0|2

+
|α1|2
q1r

)

+|α1|2
( |α0|2
|β0|2r

+
|α1|2
|β1|2

))
:= BVar ,

(36)
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Var(Ô)√BV ar

FIG. 9. Error Analysis for Linear Combination of Unitaries. Here we plot the the actual standard deviation of the

estimator,

√
Var(Ô), (solid) and its upper bound

√
BVar (dashed) for the linear combination of states algorithm for an n = 6

qubit circuit evaluated using N = 100 shots when O is a random separable measurement operator. We plot the results for pairs
of randomly generated states with a small overlap (r = 0.067, left), median overlap (r = 0.58, middle) and maximum overlap
(r = 0.95, right) for three different choices in amplitude: α0 = 0.25 (blue), α0 = 0.5 (green) and α0 = 0.95 (yellow). The
dotted lines indicate the value of |β0|2 corresponding to the minimum error and minimum of the bound respectively, with the
close agreement between these two minima indicating that the optimum |β0|2 determined from the bound, Eq. (C20), is close
to the true optimum. In agreement with Fig. 8 the optimal |β0|2 value is close to 0.5 for small r but has a stronger dependence
on α0 for larger r values.

where r = |〈ψ0|ψ1〉|2 is the overlap between the input
states. As remarked earlier, for this algorithm there is
a freedom in how the ancilla state and measurement op-
erator may be chosen. We can use the above bound to
approximately determine the optimum β0 value which
minimises the variance of the estimator. Specifically, we
find that the β0 value that minimizes BVar is

βopt
0 (p, r) =

√
p− p2 + p2r + r−1h(p, r)

2p− 2p2 + r − 2pr + 2p2r + 2r−1h(p, r)

(37)
where we use the shorthand p := |α0|2 and define

h(p, r) :=
√

(p2 − p)(−p+ p2 − r + 2pr − 2p2r − pr2 + p2r2) .
(38)

We plot βopt
0 against |α0|2 in Fig. 8. For states with small

overlaps, r → 0, the approximately optimum strategy is
to use β0 = 1/

√
2 for any choice in α0, whereas, for

states with large overlaps, r → 1, the optimum β0 value
increases monotonically with increasing α0.

In Fig. 9 we plot the exact variance of the estima-
tor (for the analytic expression see Appendix C) and the
bound on the variance BVar from Eq.(36) as a function
of β0, for different overlaps r and weights α0. While the
bound is not tight it is useful in coming up with strategies
to minimize the variance of the estimator. In particular,
the optimum β0 given by Eq. (37), found by minimizing
the bound Eq.(36), closely agrees with the true optimum
(found by numerically minimising the true variance for
the given examples). As expected given that the algo-
rithm breaks down for orthogonal input states, both the
bound and exact variance diverge for input states with
vanishing overlap (r → 0).

IV. DISCUSSION

In this work we introduced a framework for implement-
ing nonlinear transformations in quantum computers by
associating so-called weighted states with the output of
quantum instruments. More specifically, weighted states
are quantum objects describing the output of an oper-
ational procedure involving quantum circuits, measure-
ments and classical post-processing. While playing a sim-
ilar role to standard density matrices, weighted states are
liberated from the constraints of positivity, Hermiticity
and normalization and hence can be generic functions of
input states.

We have introduced three algorithms for implementing
nonlinear functionals of the elements of a set of quan-
tum states. The Quantum Hadamard Product algorithm
takes two states ρ(0) and ρ(1) as inputs and generates
a state ρ(0) � ρ(1) as an output. That is, QHP out-
puts a weighted state where the elements of ρ(0) and ρ(1)

have been multiplied in the computational basis. The
Generalised Quantum Transpose implements the trans-
pose of an operator ρ in the computational basis, with
the elements of ρT reweighted by the elements of an
operator σ. The Quantum State Polynomial algorithm
takes ρ(0) and ρ(1) as inputs and outputs the polynomial
α00ρ

(0) + α11ρ
(1) + α01ρ

(0)ρ(1) + α10ρ
(1)ρ(0). When ap-

plied to pure states, iterative applications of QHP, GQT,
QSP can be used to generate arbitrary polynomials of
the amplitudes of a set of pure states.

In Appendix E we show results from a proof of princi-
ple implementation of QSP and QHP on IBMQ-Bogota.
While the implementations correctly capture the quali-
tative effect of performing nonlinear transformations of
quantum states, the low CNOT and qubit reset fidelities
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lead to non-negligible deviations from the expected re-
sults. However, it is important to note that, due to their
amenability to qubit resets [14, 18], these algorithms do
not require large numbers of qubits. In particular, QSP,
GQT, and QHP can be concatenated and iterated an ar-
bitrarily many times with at most three times the number
of qubits of the input states. Thus a polynomial of order
p of an n-qubit pure state can be implemented using at
most 3n qubits (for any p).

It is important to note that distinct quantum instru-
ments can implement the same transformation with dif-
fering complexities. In other words, in this framework,
the complexity associated with a transformation is not
an inherent property of the transformation. However,
one can ask what is the optimal quantum instrument for
a given transformation. A promising setting in which
this question might be tractable is when the cost of im-
plementing unitaries is neglected, in other words we are
only concerned with minimizing the sampling complexity.
How exactly to do this optimization is an open question;
however, in Section III C we were able to do a partial
optimization for one of our algorithms (namely, QSP as
applied to implementing linear combinations of states).

In this paper we focused on primitives that implement
intuitive transformations and require relatively simple
quantum circuits for their implementation. These prim-
itives can be concatenated to yield complex nonlinear
transformations of input states. While concatenation is
qubit-efficient, in Appendix C 7 we provide examples of

cases where a transformation can be implemented more
efficiently directly. Thus it would be valuable to have a
method for directly designing quantum instruments for a
target transformation. More generally, it would be inter-
esting to investigate the breadth of applicability of the
weighted state methodology by quantifying the full set
of transformations that can be implemented within this
framework.
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Appendices

Appendix A: Quantum instruments

In this section we elaborate on the quantum instruments associated with the quantum Hadamard product, quan-
tum generalized transpose, and density matrix polynomial algorithms and provide alternative derivations of these
algorithms from this perspective.

1. Quantum Hadamard Product

The quantum instrument for the QHP is shown in Fig. 2. Let x be the outcome of a measurement in the computa-
tional basis. Given this classical output of the quantum instrument, the associated quantum output is proportional
to:

Ex(ρ(0) ⊗ ρ(1)) =
∑

i,j

ρ
(0)
ij ρ

(1)
i⊕x,j⊕x |i〉〈j| (A1)

The weighting in this case corresponds to post-selection; only x = 0 has unit weight and all other outcomes have zero
weight.

τ̃ =
∑

x

δx,0Ex(ρ(0) ⊗ ρ(1)) (A2)

=
∑

i,j

ρ
(0)
ij ρ

(1)
i,j |i〉〈j| = ρ(0) � ρ(1) (A3)

Note that one can generate a large family of weighted states by projecting onto states other than |0〉 and/or nontrivially
weighting all outcomes of the measurement.

2. Generalized Quantum Transpose

The quantum instrument for the GQT is shown in Fig. 4. In practice the measurement of SWAP operator is
implemented by measuring pairs of qubits in the Bell basis as seen in Fig 5 [15]. This can be achieved by first acting
with a CNOT on qubit pairs and then Hadamard gates on the control qubits, and finally measuring all qubits in the
computational basis. Let x and y be the binary strings that are the outcome of the measurements in the two registers
where SWAP operator is measured. Given this classical output of the quantum instrument, the associated quantum
output is proportional to:

Ex,y(σ ⊗ ρ) =
1

2n

∑

ij

σi,jρi⊕y,j⊕y(−1)x·(i⊕j) |i〉〈j| (A4)

where n is the number of qubits in each input register. The weighted state is obtained by weighting the quantum
outcomes of the instruments as:

τ̃ =
∑

x,y

(−1)x·yEx,y(σ ⊗ ρ) (A5)

=
∑

y

∑

ij

σi,jρi⊕y,j⊕y

(
1

2n

∑

x

(−1)x·(i⊕j⊕y)

)
|i〉〈j| (A6)

=
∑

ij

σi,jρj,i = σ � ρT (A7)

where going from the second to the last line we used the fact
∑
x(−1)x·(i⊕j⊕y) = 2nδy,i⊕j and i ⊕ i ⊕ j = j. All

summations are modulo 2.
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3. Quantum State Polynomial

The quantum instrument for QSP is shown in Fig. 6. Let |ψl〉 be the state that correspond to the l’th outcome
of the M measurement. Given this classical output of the quantum instrument, the associated quantum output is
proportional to:

El(ρ(0) ⊗ ρ(1)) =
∑

i,j

σij 〈j|ψl〉 〈ψl|i〉
[
δij Tr(ρ(i⊕1))ρ(i) + (1− δij)ρ(i)ρ(j)

]
(A8)

The weighted state is obtained by weighting the quantum outcomes of the instrument as:

τ̃ =
∑

l

λlEl(ρ(0) ⊗ ρ(1)) (A9)

=
∑

i,j

σij 〈j|
(∑

l

λl |ψl〉〈ψl|
)
|i〉
[
δij Tr(ρ(i⊕1))ρ(i) + (1− δij)ρ(i)ρ(j)

]
(A10)

=
∑

ij

(σ �MT )ij

[
δij Tr(ρ(i⊕1))ρ(i) + (1− δij)ρ(i)ρ(j)

]
(A11)

= σ00M00 Tr(ρ(1))ρ(0) + σ11M11 Tr(ρ(0))ρ(1) + σ01M10ρ
(0)ρ(1) + σ10M01ρ

(1)ρ(0) (A12)

where going from the second to the last line we used the fact M =
∑
l λl |ψl〉〈ψl|.

4. Going beyond normal measurement operators

Let us consider a set of quantum instruments Ik(σ, U,Nk), labeled by k, that share the same ancilla state σ and that
apply the same unitary U , but differ in terms of the measurement operators M now referred to as Nk to emphasize they
are normal. Data from such quantum instruments can be compounded to emulate a fictitious quantum instrument
Ik(σ, U, M̄) with a non-normal measurement operator M =

∑
k ckNk. This follows from Eq. (4) via linearity. That

is, as
∑

k

ck Tr[ρout(O ⊗Nk ⊗ I)] = Tr[ρout(O ⊗
∑

k

ckNk ⊗ I)] = Tr[ρout(O ⊗M ⊗ I)] (A13)

it follows that
∑
k ckIk(σ, U,Nk) ∼= Ik(σ, U, M̄). It is easy to see that this allows us to effectively implement any M

since any operator can be written as the sum of its Hermitian and anti-Hermitian components via

M =
1

2
(M +M

†
) +

1

2
(M −M†) . (A14)

As both parts are normal, we could pick two instruments N0 = (M + M
†
) and N1 = (M −M†) with c0 = c1 = 1/2

to achieve our goal. We emphasize that this example is only intended as a proof of existence and not a recipe. There
are an infinite number of ways to satisfy Eq. (A13), and some ways may result in better sampling complexity than
others.

However, such non-normal measurement operators are not strictly necessary for full generality. This is because
given an instrument I(σ, U,M), where M is a non-normal operator it is possible to define an alternative instrument
I(σ⊗σ′, U⊗I,M), where M is a normal operator, and the alternative instrument implements the same transformation
as the original.

To see how let us, without loss of generality, assume ck > 0 and
∑
k ck = 1. The alternative quantum instrument

I(σA⊗ σ′A′ , UAI ⊗ IA′ ,ME′E), where we now include subscripts to explicitly denote the relevant subsystem, shown in
Fig. 10. There is an additional ancilla register initially prepared in the state σ′A′ =

∑
k ck |k〉〈k|. The unitary is the

same as before and does not act on this new ancilla register. The environment register on the output now includes
the added ancilla register. The measurement operator is given by ME′E =

∑
k |k〉〈k|E′ ⊗ (Nk)E , which is normal by

construction. The quantum state before the measurement is ρ′
out
SEE′G = ρoutSEG ⊗ σ′E′ and so we have

TrSEE′G[(ρoutSEG ⊗ σ′E′)(OS ⊗MEE′ ⊗ IG)] = TrSEG[ρoutSEG(OS ⊗
∑

k

ck(Nk)E ⊗ IG)] (A15)

= TrSEG[ρoutSEG(OS ⊗ME ⊗ IG)] . (A16)
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FIG. 10. Capturing a non-normal measurement within the standard weighted state framework. Here we show
two equivalent quantum instruments I(σA, UAI ,ME) and I(σA ⊗ σ′A′ , UAI ⊗ IA′ ,ME′E).

Thus I(σA, UAI ,ME) ∼= I(σA ⊗ σ′A′ , UAI ⊗ IA′ ,ME′E) as claimed. Note that this construction is equivalent to
randomly sampling quantum instruments with measurement operator Nk with probability ck, but the formulation in
terms of a single instrument allows us to simplify notation for the rest of the discussion.

Appendix B: Alternative methods for preparing a linear combination of states

Given L+ 1 states {|ψi〉}Li=0, our goal is to simulate the effect of having access to a superposition of these states:

|Φ〉 =

L∑

l=0

αl |φl〉 . (B1)

The states {|φi〉}Li=0 do not form an orthonormal basis, and |Φ〉 does not have to be normalized. In the main text we
describe a method for generating such linear combinations of states via repeated applications of the Quantum State
Polynomial algorithm. Here we describe three alternative methods for this task.

1. ‘All-At-Once’ weighted state method

In this section we describe a weighted state methodology where the linear combination of states is generated in a
single step via a global measurement. This approach is more general than the iterative application of QSP algorithm,
capturing it as a special case.

Consider the quantum circuit shown in Fig. 11. Here σ = |β〉〈β| where

|β〉 =

L∑

l=0

βl |l〉 . (B2)

The controlled unitary is given by

|l〉〈l| ⊗ π̂l (B3)

where π̂l is a permutation that maps the l’th state to the 0’th state

π̂l |φ0〉 ⊗ |φ1〉 ⊗ · · · ⊗ |φL〉 = |φl〉 ⊗ |φπl(1)〉 · · · ⊗ |φπl(L)〉 (B4)

i.e. πl(0) = l for the state labels4. Beyond this specification, we leave the permutations πl underspecified. The state

4 One could equivalently see this operation as mapping the 0’th register to the l’th register.
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at the end of this operation is given by

L∑

l=0

βl |l〉 ⊗ |φl〉
L⊗

k=1

|φπl(k)〉 (B5)

The next step is to trace out all but the top two registers. To do so, we first write down the density operator for the
pure state of all the registers given above

L∑

l,l′=0

βlβ
∗
l′ |l〉〈l′| ⊗ |φl〉〈φl′ |

L⊗

k=1

|φπl(k)〉〈φπl′ (k)
| . (B6)

Then, tracing out the registers 1 through L we get

L∑

l,l′=0

βlβ
∗
l′

L∏

k=1

〈φπl′ (k)
|φπl(k)〉 |l〉〈l′| ⊗ |φl〉〈φl′ | . (B7)

Next we swap the top two registers and compute the expectation value of an operator M on the lower register and
output the top register. This leaves us with a weighted state given by

L∑

l,l′=0

βlβ
∗
l′ 〈l′|M |l〉

L∏

k=1

〈φπl′ (k)
|φπl(k)〉 ⊗ |φl〉〈φl′ | (B8)

We want this to match the density operator

|Φ〉〈Φ| =
L∑

l,l′=0

αlα
∗
l′ |φl〉〈φl′ | (B9)

Matching term by term we demand

〈l′|M |l〉 =
αlα
∗
l′

βlβ∗l′
∏L
k=1 〈φπl′ (k)

|φπl(k)〉
(B10)

We remark that M is Hermitian, i.e. M∗ll′ = 〈l|M |l′〉∗ = 〈l′|M |l〉 = Ml′l, and hence is a valid observable. If we
have access to multiple copies of the states φl we can estimate the overlaps in the denominator. For small L we can
construct the matrix M and compute its eigenvalues efficiently. Moreover, we can classically compute a unitary UM
that diagonalizes M , i.e. U†MMUM is diagonal, and find a quantum circuit that implements it on a quantum computer.
Then the measurement of M can be achieved by first applying UM and then measuring in the computational basis
and recording the associated eigenvalue. Thus the circuit shown in Fig. 11 can be used to prepare the weighted state
|Φ〉.

Similarly, to the method for generating linear combinations of states via repeated applications of the Quantum
State Polynomial algorithm, this algorithm breaks down if any one of the states {|φl〉}Ll=0 is outside the space spanned
by the rest of the states. In the next two subsections we propose alternative methods that may be used in these cases.

2. Incoherent post-processing method

If our goal is simply to apply some unitary V to |Φ〉 and make a measurement of O, we can achieve this by applying
unitaries to {|φl〉} individually and computing matrix elements of M in this new set. That is one can compute

〈Φ|V †OV |Φ〉 =

L∑

l,l′=0

αlα
∗
l′ 〈φl′ |V †OV |φl〉 (B11)

by computing each 〈φl′ |V †OV |φl〉 term, reweighting it by αlα
∗
l′ and then summing together the outputs.

Computing the diagonal terms 〈φl|V †OV |φl〉 is straightforward. This is simply done by evolving |φl〉 under V and
then measuring O. The off diagonal terms 〈φl′ |V †OV |φl〉, for l 6= l′, can be computed using the Hadamard test if
one has access to the controlled versions of the unitaries Wl that prepare |φl〉. To do so, we have to first expand
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FIG. 11. Direct Linear combination of states algorithm. Here we show a circuit to directly compute the linear com-
bination of many states. π̂l is a permutation that maps the l’th state to the 0’th state. The final swap does not need to be
implemented but rather is included to match the register labelling convention chosen in Fig. 1.

the measurement operator as as a linear combination of unitaries, e.g. as O =
∑
i riUi. Equipped with this linear

combination we then have

〈φl′ |V †OV |φl〉 =
∑

i

ri 〈0|W †l′V †UiVWl|0〉 . (B12)

Thus 〈φl′ |V †OV |φl〉 is a weighted sum of the expectation value of the unitaries W †l′V
†UiVWl in the state |0〉, and

each of these expectation values may be computed with a Hadamard test. In applications where the gate sequence
for implementing Wl is known, a controlled version can be obtained with a constant factor overhead.

3. Linear Combination of Unitaries (LCU) method

Here we assume that we have access to the controlled versions of the unitaries Wl that prepare |φl〉. In order to
prepare the linear combination of states in Eq. (B1) we act on the |0〉 state with the LCU given by

L∑

l=0

αlWl . (B13)

The LCU method [20] has the same restriction as the incoherent method in that it requires access to the controlled
version of the unitaries Wl. The main difference is that the LCU method actually prepares the normalized state

|ΦN 〉 =
|Φ〉
‖ |Φ〉 ‖ =

1√∑
ll′ α

∗
l αl′ 〈φl|φl′〉

L∑

l=0

αl |φl〉 (B14)

with probability (‖ |Φ〉 ‖/‖α‖1)2, where ‖α‖1 =
∑
l |αl|. This probability can be boosted by amplitude amplification.

In addition, note that we need to know ‖ |Φ〉 ‖ in order to compute quantities of interest in terms of |Φ〉 using the

actual state |ΦN 〉. This can be done by computing the overlaps 〈φl|φl′〉 = 〈0|W †l Wl′ |0〉 using the Hadamard test,
since we assume access to the controlled-Wl’s.

Appendix C: Sampling complexity analysis

1. General analysis for weighted states

In the approach outlined in Section II the expectation value of an operator O in a weighted state τ̃ is obtained from
the expectation value of the operator O⊗M in a state ρout — see Eq. (4). In this appendix we analyze the sampling
complexity of estimating expectation values using this approach in general before focusing on specific applications in
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the following sections. Unlike in the main text where M was Hermitian, here we allow it to be an arbitrary normal
operator. The total operator whose expectation value we need to estimate is given by

T = O ⊗M ⊗ I (C1)

We estimate 〈T 〉 with T̂ using

T̂ =
1

s

s∑

i=1

νt(i) . (C2)

Here, s is the number of circuit evaluations and νt(i) is the outcome of i’th measurement i.e. the t(i)’th eigenvalue

of T . Since T is a normal operator T̂ is a complex random number. This estimator is unbiased since it relies on the
standard method for estimating a quantum expectation value. The variance is defined as

Var(T̂ ) = E[|T̂ |2]− |E[T̂ ]|2 (C3)

=
1

s

(
Tr[ρout(OO† ⊗MM† ⊗ I)]− |Tr[τO]|2

)
. (C4)

In Appendix. A 4 we explained how to express a quantum instrument with a non-normal measurement operator
M =

∑
k ckNk in terms of an instrument with a normal measurement operator M . In this case the above analysis

can be repeated to yield

Var(T̂ ) =
1

s

(∑

k

ck Tr[ρ̄out(OO† ⊗NkN†k ⊗ I)]− |Tr[τO]|2
)

(C5)

Ideally one wants to minimize the number of shots s, i.e. circuit evaluations, needed to achieve a desired variance for
the estimator. This can be done, in theory, by optimizing over all quantum instruments {I(σ, U,M)} that implement
the desired transformation. However, it is an open question how to do this in practice. In addition, there may be
other considerations than sampling complexity. For instance, in order to measure a normal operator we first need
to apply the diagonalizing unitary, which might be hard to compute classically or hard to implement on a quantum
computer. Such considerations should also be taken into account when formulating the optimization task, especially
when using noisy quantum devices.

2. Proof of operator independent bound on variance

To compare the sampling complexity associated with different quantum instruments implementing the same trans-
formation and provide an observable independent analysis of the complexity of our algorithms, it is advantageous to
derive an operator independent bound on the variance. Here we provide proofs of our operator independent bounds
on the variance quoted in the main text. We start by providing a proof [19] for Eq. 30,

σ2
XY ≤ 2σ2

X |||Y ||∞|2 + 2|〈X〉|2σ2
Y (C6)

which we repeat for the general case where X and Y are complex random variables. To derive this we consider two
complex random variables A = (X − 〈X〉)Y and B = 〈X〉Y , and note that

Var(XY ) = Var(A+B) (C7)

≤ 2Var(A) + 2Var(B) (C8)

= 2Var((X − 〈X〉)Y ) + 2|〈X〉|2Var(Y ) . (C9)

We then note that,

Var((X − 〈X〉)Y ) ≤ 〈|X − 〈X〉)Y |2〉 (C10)

≤ Var(X)|||Y ||∞|2 , (C11)

and thus we obtain Eq. (C6). Applying this to evaluating Var(Ô), and assuming O is Hermitian, we have that

Var(Ô) ≤ 2

s

(
σ2
M ||O||2∞ + |〈M〉|2σ2

O

)
. (C12)
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Assuming that the largest eigenvalue of O is bounded by 1 we have that ||O||2∞ ≤ 1 and σ2
O ≤ 1 and so

Var(Ô) ≤ 2

s

(
σ2
M + |〈M〉|2

)
=

2〈|M |2〉
s

:= BVar . (C13)

In the following sections we evaluate the variance Var(O) and its bound Eq. (C13) for the primitive nonlinear
subroutines that we have introduced in this manuscript.

3. Quantum state polynomial

For the case of the quantum state polynomial algorithm the variance of the estimator evaluates to

Var(Ô) =
1

s

(
σ00[M†M ]00 Tr[ρ0O

2] + σ11[M†M ]11 Tr[ρ1O
2]

+ σ01[M†M ]10 Tr[ρ0ρ1O
2] + σ10[M†M ]01 Tr[ρ1ρ0O

2]− |Tr[τO]|2
)
.

(C14)

Since we have α = σ �MT � γin, it follows that

Var(Ô) =
1

s

(
σ00

( |α00|2
|σ00|2

+
|α10|2
|σ10|2

)
Tr[ρ1] Tr[ρ0O

2] + σ11

( |α11|2
|σ11|2

+
|α01|2
|σ10|2

)
Tr[ρ0] Tr[ρ1O

2]

+

(
α00

σ00

α∗01
σ∗01

+
α∗11
σ∗11

α10

σ10

)
σ01 Tr[ρ0ρ1O

2] +

(
α∗00
σ∗00

α01

σ01
+
α11

σ11

α∗10
σ∗10

)
σ10 Tr[ρ1ρ0O

2]− |Tr[τO]|2
)
.

(C15)

We note that this expression is real since the off diagonal elements are complex conjugate of one another. We can use
the operator independent bound, Eq. (C13), to bound this variance as

Var(Ô) ≤ 2

s

((
σ00

(
α2
00

σ2
00

+
α01α10

σ01σ10

)
+ σ11

(
α2
11

σ2
11

+
α01α10

σ01σ10

))
Tr[ρ0] Tr[ρ1]

+

(
α00

σ00
+
α11

σ11

)
(α01 + α10) Tr[ρ0ρ1]

)
.

(C16)

4. Linear combination of states via Quantum State Polynomial algorithm

For the special case of a linear combination of states we have α00 → |α0|2/〈ψ0|ψ0〉, α11 → |α1|2/〈ψ1|ψ1〉, α01 →
α0α

∗
1/〈ψ0|ψ1〉, α10 → α1α

∗
0/〈ψ1|ψ0〉 and σ00 → |β0|2, σ11 → |β1|2, σ01 → β0β

∗
1 , σ10 → β1β

∗
0 . Therefore in this case

we have

Var(Ô) =
1

s

(
|β0|2N1

( |α0|4
|β0|4N0

+
|α0|2|α1|2
|β0|2|β1|2r

)
Tr[ρ0O

2] + |β1|2N0

( |α1|4
|β1|4N1

+
|α0|2|α1|2
|β0|2|β1|2r

)
Tr[ρ1O

2]

+2

( |α0|2
|β0|2

√
N0

+
|α1|2

|β1|2
√
N1

)
<
(
α0α

∗
1〈ψ0|O2|ψ1〉

)
− Tr[τO]2

)

=
1

s

(
|α0|2N1

( |α0|2
|β0|2N0

+
α1|2
|β1|2r

)
Tr[ρ0O

2] + |α1|2N0

( |α1|2
|β1|2N1

+
|α0|2
|β0|2r

)
Tr[ρ1O

2]

+2

( |α0|2
|β0|2

√
N0

+
|α1|2

|β1|2
√
N1

)
<
(
α0α

∗
1〈ψ0|O2|ψ1〉

)
− Tr[τO]2

)
,

(C17)

where N0 = |〈ψ0|ψ0〉|2, N1 = |〈ψ1|ψ1〉|2, and r = |〈ψ0|ψ1〉|2.
With the weighted state method for generating linear combinations of states there is some freedom in how the final

measurement operator is chosen depending on the state of the ancilla qubit. To assess the optimum strategy, i.e. the
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optimum ancilla state and measurement pair that minimizes the sampling complexity, it is advantageous to use the
operator independent bound on the variance Eq (C13). It follows from Eq (C13) and Eq. (C17) that

〈M2 ⊗ I〉 = |α0|2
( |α0|2
|β0|2

+
|α1|2
|β1|2r

)
+ |α1|2

( |α0|2
|β0|2r

+
|α1|2
|β1|2

)
. (C18)

Setting |α0|2 = p and |β0|2 = q this can be rewritten as

〈M2 ⊗ I〉 = p

(
p

q
+

(1− p)
(1− q)r

)
+ (1− p)

(
p

qr
+

(1− p)
(1− q)

)
= f(p, q, r) . (C19)

Given 0 ≤ p ≤ 1 and 0 ≤ r ≤ 1, f(p, q, r) is minimized when

qopt(p, r) =
2p− 2p2 + 2p2r + 2r

√
(−p+p2)(−p+p2−r+2pr−2p2r−pr2+p2r2)

r2

2

(
2p− 2p2 + r − 2pr + 2p2r + 2r

√
(−p+p2)(−p+p2−r+2pr−2p2r−pr2+p2r2)

r2

) (C20)

This expression thus gives us a way of picking the ancilla state specified by β0 given a target state specified by α0

and r = |〈ψ0|ψ1〉|2. In Fig. 8 we use (C20) to plot the optimum |β0|2 as a function of |α0|2 and r. In the limit that

r → 0, we have that qopt =→ 1/2, that is the optimum strategy is picking |β0| ≈ 1/
√

2. Conversely, in the limit that
r →∞ we have |β0|2 = qopt → p

p+
√

(1−p)p
.

5. Linear combination of states via incoherent post-processing method

Suppose instead we compute the expectation value of an observable O with respect to the state |ψ〉 using purely
classical post-processing. That is, as discussed in Appendix B 2, we compute

〈ψ|O |ψ〉 = |α0|2 〈ψ0|O |ψ0〉+ |α1|2 〈ψ1|O |ψ1〉+ α∗0α1 〈ψ0|O |ψ1〉+ α0α
∗
1 〈ψ1|O |ψ0〉

= |α0|2 〈ψ0|O |ψ0〉+ |α1|2 〈ψ1|O |ψ1〉+ 2<(α∗0α1)<(〈ψ0|O |ψ1〉)− 2=(α∗0α1)=(〈ψ0|O |ψ1〉)
(C21)

by computing the terms 〈ψ0|O |ψ0〉, 〈ψ1|O |ψ1〉, <(〈ψ0|O |ψ1〉) and =(〈ψ0|O |ψ1〉) separately. To measure the off-
diagonal terms <(〈ψ0|O |ψ1〉) and =(〈ψ0|O |ψ1〉) we can expand the measurement operator O as a sum of unitaries5,
i.e. O =

∑
i ηiUi, and then use pairs of Hadamard tests to obtain the real and imaginary parts of the overlap terms

〈ψ0|Ui |ψ1〉. That is, in total one evaluates each of the terms in

〈ψ|O |ψ〉 = |α0|2 〈ψ0|O |ψ0〉+ |α1|2 〈ψ1|O |ψ1〉+ 2
∑

i

ηi (<(α∗0α1)<(〈ψ0|Ui |ψ1〉)−=(α∗0α1)=(〈ψ0|Ui |ψ1〉)) .

(C22)
Let use denote the estimators of the terms 〈ψ0|O |ψ0〉, 〈ψ1|O |ψ1〉, <(〈ψ0|Ui |ψ1〉), and =(〈ψ1|Ui |ψ0〉) in Eq. (C22)

by P̂0, P̂1, P̂2,i and P̂3,i respectively. Following the approach of Ref. [21] we will suppose that our total shot quota is
divided between the different circuits in proportion to the prefactor in the sum. Under this approach, for a random

variable of the form Q =
∑
i µiQi, we use si ∝ |µi| shots to get the estimator Q̂i, resulting in a variance of

Var(Q̂) =
∑

i

|µi|2Var(Q̂i)
si

=
∑

i

|µi|2Var(Q̂i)
b|µi|s̃c

≈
∑

i

|µi|Var(Q̂i)
s̃

. (C23)

Here the normalisation term s̃ is chosen such that
∑
i si =

∑
ib|µi|s̃c = s and the approximation at the last equality

gets better with the number of shots. The variance for the incoherent post-processing method thus takes the form

Var(Ô) ≈ 1

s̃

(
|α0|2Var(P̂0) + |α1|2Var(P̂1)+

2|<(α∗0α1)|
∑

i

ηiVar(P̂2,i) + 2|=(α∗0α1)|
∑

i

ηiVar(P̂3,i)

)
,

(C24)

5 Without loss of generality we here assume that the ηi prefactors are real and positive, ηi > 1, by absorbing any phases into the
corresponding unitary Ui.
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FIG. 12. Comparison of weighted state and post-processing methods. Here we plot the standard deviation of the

estimator,

√
Var(Ô), for the weighted state method (yellow) and the post-processing method (blue) for implementing the linear

combination of two n = 4 qubit states as a function of α0. In both cases we suppose that a total of s = 100 shots are used. We
plot the results for pairs of randomly generated states with a small overlap (r = 0.067, left), median overlap (r = 0.58, middle)
and maximum overlap (r = 0.95, right). We compare the case of measuring a simple measurement (solid) composed of a single
Pauli term and a complex measurement (dashed) composed of n2 Pauli terms.

where s̃ ≈ s
(
|α0|2 + |α1|2 + 2 (|<(α∗0α1)|+ |=(α∗0α1)|)∑i ri

)−1
.

Since the Hadamard test only requires measuring a Pauli operator, the errors for computing the overlap terms take
the form

Var(P2i) = 1−<(〈ψ0|Ui |ψ1〉)2 (C25)

Var(P3i) = 1−=(〈ψ0|Ui |ψ1〉)2 . (C26)

Thus the total error takes the form

Var(Ô) =
1

s̃

(
|α0|2

(
〈ψ0|O2 |ψ0〉 − 〈ψ0|O |ψ0〉2

)

+ |α1|2
(
〈ψ1|O2 |ψ1〉 − 〈ψ1|O |ψ1〉2

)

+ 2<(α∗0α1)
∑

i

ri
(
1−<(〈ψ0|Ui |ψ1〉)2

)

+ 2=(α∗0α1)
∑

i

ri
(
1−=(〈ψ0|Ui |ψ1〉)2

))
.

(C27)

In Fig. 12 we compare the convergence of the weighted state and post-processing methods for taking the linear
combination of states. We find that with the exception of taking the linear combination of nearly orthogonal states
the convergence is comparable. It is unsurprising that the convergence for nearly orthogonal states is poor for the
weighted state method since, as discussed in the main text, this method cannot be applied to perfectly orthogonal
states. In contrast for observables composed of a sum of many unitaries (i.e. ‘complex’ observables in Fig. 12) the
weighted state approach has smaller variance than the post-processing method because a large number of distinct
circuits need to be run for the latter.

6. Powers of states via the generalized quantum transpose algorithm

The Generalized Quantum Transpose algorithm may be used to prepare the Quantum Hadamard Product of a pair
of states ρ(0) and ρ(1) if one knows how to prepare the transpose of either ρ(0) or ρ(1). Moreover, the procedure for
preparing the transpose of a state may be straightforwardly computed if the procedure for preparing the original state
is known in some detail. Thus GQT, under the right circumstances, provides an alternative means of implementing the
QHP and so powers of states. In this section, we include a sampling analysis of this alternative means of implementing
powers of states and compare it with the standard method of QHP.

When the GQT circuit is repeatedly applied to implement the power of a state, the variance is given by

VarGQT (Ô) = Tr[D(|ψ〉〈ψ|)O2]−
(
〈ψk|O |ψk〉

)2
(C28)



20

for any power k. Comparing this to the variance VarQHP[Ô] obtained for the QHP algorithm we have

D := VarQHP[Ô]−VarGQT[Ô] = 〈ψk|O2|ψk〉 − Tr(D(|ψ〉〈ψ|)O2)

=
∑

ij

(ψ∗j )k(O2)jiψ
k
i −

∑

i

|ψi|2(O2)ii .
(C29)

To get a handle on this quantity it is helpful to first consider the case where O2 = 1, as is the case, for example if O
is a Pauli operator. In this case, we have

D = 〈ψk|ψk〉 − 1 . (C30)

Since 〈ψk|ψk〉 ≤ 1 it follows that VarQHP[Ô] ≤ VarGQT[Ô], i.e. the convergence of QHP is better than that of GQT.
It is also straightforward to show that when the input states are pure single qubit states we also are guaranteed

that VarQHP[Ô] ≤ VarGQT[Ô]. To see this, let us suppose |ψ〉 =
√

1− ε|0〉 +
√
ε|1〉, where we drop a relative phase

between |0〉 and |1〉 without loss of generality since this phase does not contribute to the variance. For the case of a
single application k = 2 we have

D =
∑

ij

(ψ∗j )2(O2)jiψ
2
i −

∑

i

|ψi|2(O2)ii

= (1− ε)2(O2)00 + ε2(O2)11 + ε(1− ε)((O2)01 + (O2)10)− (1− ε)(O2)00 − ε(O2)11

= −ε(1− ε)
(
(O2)00 + (O2)11 − (O2)01 − (O2)10

)
.

(C31)

Without loss of generality we can write O = αII+αxX+αyY +αzZ such that O2 = (α2
I +α2

x+α2
y +α2

z)I+αIαxX+
αIαyY + αIαzZ. Thus we end up with

D = −ε(1− ε)
(
α2
I + α2

x + α2
y + α2

z − 2αIαx
)

= −ε(1− ε)
(

(αI + αx)
2

+ α2
y + α2

z

)
≤ 0 .

(C32)

Thus the variance of QHP is less than that of GQT in the case that k = 2. It is manifestly clear from Eq. (C29) that
increasing k for a given O and |φ〉, decreases D and hence D is negative for all k for the case of single qubit states.

From these two examples, the case of a single qubit system and/or Pauli operators O, we suggest that in most cases
the QHP converges quicker than the GQT. This is supported by the numerical results shown in Fig. 13. However, of
course, we are not quite comparing like for like here since GQT can be used to implement the transpose operation.

7. Concatenation can be inefficient

Consider the task of preparing the weighted state τ = ρ(0) � ρ(1)T from the input state ρ(0) ⊗ ρ(1). This can be
achieved in two ways: (i) use the generalized quantum transpose circuit, but now treating the ancilla register as part
of the input, or (ii) first apply the quantum transpose on ρ(1) (by using the GQT circuit with input σ = |+〉〈+| and
measurement operator d×SWAP) followed by the quantum Hadamard product with ρ(0). Thus we have two different
quantum instruments that implement the same transformation on the inputs: (i) achieves the task directly, and (ii)
concatenates two primitives. It is informative to study the sampling complexity of both approaches. We want to
estimate the expectation value of some operator O in the weighted state τ given by Tr(τO).

The variance of the estimator for method (i) is already calculated in Eq. (34) and is given by Tr(D(ρ(0))O2) −
|Tr(τO)|2. The variance of the estimator for method (ii) can be expressed in terms of Eq. (29) if we treat the
two concatenated instrument as a single instrument with measurment operator d(|0〉〈0| ⊗ SWAP ) and is given by
d2 Tr(D(ρ(0))O2)−|Tr(τO)|2. The additional factor of d2 drastically favors the first method. This demonstrates that
concatenation of primitives can be very costly and it might be advantageous to design instruments that implement a
desired transformation directly.

A similar observation can be made with regards to the LCS algorithm. Given a concatenation scheme to prepare
the superposition of L > 2 states, one can in general find a more efficient way of implementing the same task directly
using a single instrument that takes all states as input as described in Section B 1.

Appendix D: Quantum state polynomials realizable without randomization of instruments

In Section. A 4 we have described how quantum instruments with nonnormal measurement operators can thereby
be emulated by physical quantum instruments that have normal measurement operators and can be realized in a
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E(Ô)√
Var(Ô)√
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FIG. 13. Comparing Sampling Error for Powers of States via QHP and GQT. Here we plot the standard deviation

of the estimator

√
Var(Ô) (solid), the actual measurement outcome E(Ô) (dotted) and the relative error

√
Var(Ô)/E(Ô)

(dashed) for the state |ψ〉 ∝
∑
j ψj |j〉, with the functions ψj indicated in the legend, as a function of power k. The GQT

(QHP) algorithm is used in the left (right) column. In all cases we consider an n = 6 qubit circuit, we measure the all zero
projector O = |0〉〈0| and suppose 1000 shots are used.

quantum computer. This is done by randomizing over quantum instruments. This additional step, however, can
increase the sampling complexity, as it adds yet another component to the variance of the estimator. However, in
practice there might be other considerations than minimizing the sampling cost. For instance if M can be expressed
as the sum of Pauli operators, the circuits for measuring each term can be much shorter than the one for measuring
M directly. In such cases the randomized instrument may be preferred in a noisy implementation. Below we classify
the class of all transformations we can implement with the QSP algorithm using a single instrument shown in Fig. 6
(i.e. without the additional ancilla as in Fig. 10).

Suppose α ∈ C2×2 contains the coefficients for which that we wish to realize a weighted state. α can be written as

α = H+ iS where H = α+α†

2 and S = α−α†
2i are both Hermitian matrices. Since the Pauli matrices, P = {I,X, Y, Z},

span the set of Hermitian matrices, we can write H =
∑
P∈P hPP and S =

∑
P∈P sPP . Note that the coefficients,

hP , sP , can be found easily from the entries of α.
Let us assume for now that the input states are normalized. We would like to find a density operator σ and

normal matrix M such that α = σ �MT . Since σ is a density operator it can be written as σ = I/2 + (r/2)u · σ,
where σ ≡ (X,Y, Z), ‖u‖ = ‖(ux, uy, uz)‖ = 1, and r ∈ [0, 1]. Similarly, by normality of M we can write M =
(aI + v · σ) + i(bI + cv · σ) where a, b, c ∈ R and v ∈ R3. Without loss of generality we let uy = 0, so that
u = (sin θ, 0, cos θ).

Comparing this choice of coefficients with the requirement α = σ �MT , we find:

H = hII + hXX + hY Y + hZZ = (a+ r cos θvz)I + (r sin θvx)X − (r sin θvy)Y + (ar cos θ + vz)Z (D1)

S = sII + sXX + sY Y + sZZ = (b+ cr cos θvz)I + (cr sin θvx)X − (cr sin θvy)Y + (br cos θ + cvz)Z (D2)

It can easily be shown that choosing σ to be pure is more general than choosing a mixed state, so we will assume
r = 1. We also only consider the case where α is not diagonal, since this can be dealt with easily. Note that this
condition will necessarily require sin θ and cos θ to be nonzero.

Equations (D1) and (D2) represent 8 equations in 7 variables, a, b, c, vx, vy, vz, and θ. By comparing the equations
for hX , hY , sX , and sY , we immediately see that sx = chx and sy = chy. These imply that c = sx/hx = sy/hy, which
is easily shown to be equivalent to |α01| = |α10|. We can satisfy these four equations by setting

vx =
2hx
sin θ

, vy =
−2hy
sin θ

. (D3)

We now consider two cases.
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Case 1: α = eiφĤ for some Hermitian Ĥ. By Euler’s formula, we know that α = cosφĤ + i sinφĤ = H + iS.
Thus, for every i ∈ {I,X, Y, Z} it is implied that si = tanφ · hi (in fact, the assumption is equivalent to the existence
of a scalar, k, such that si = k · hi for every i). By setting b = a tanφ and c = tanφ we can satisfy the sI and sZ
equations. By simple substitutions in the hI and hZ equations, we find that

a = 2h0 − cos θvz, vz =
2hz − 2h0 cos θ

1− cos2 θ
. (D4)

We have solutions for a, b, c, vx, vy, and vz, and all equations are satisfied, but θ is still a free parameter. Thus in the

case α = eiφ · Ĥ for some Hermitian Ĥ, we have an infinite choice of ancilla states by setting θ to be any non-multiple
of π.

Note: the assumption in this case is a generalization of both Hermitian and skew-Hermitian matrices. Suppose
A ∈ C2×2 satisfies A = eiφĤ. This occurs if and only if A† = e−iφĤ = e−2iφeiφĤ = e−2iφA. Note that if φ = 0 then
A is Hermitian, and if φ = π/2 then A is skew-Hermitian.

Case 2: α 6= eiφ · Ĥ for any Hermitian Ĥ. By solving the equations for hI and sI for a and b and substituting
these values into the equations for hZ and sZ , we find that

cos θ = R(α) ≡ sz − chz
s0 − ch0

(D5)

which is well defined since c = s0/h0 would imply a satisfying assignment such that c = sz/hz, which contradicts the
assumption. Since cos θ must be strictly between -1 and 1 (α is not diagonal), if R(α) /∈ (−1, 1) then we will not be
able to satisfy (D5), implying that no ancilla states exist for α = σ �MT . However, in the case R(α) ∈ (−1, 1) we
can set θ = ± arccos[R(α)], fixing θ and satisfying (D5).

Since θ is now fixed, the equations for hI , sI , hz, and sZ represent a linear system of 4 equations in three variables
a, b, and vz, which can be written as




1 0 cos θ
0 1 c cos θ

cos θ 0 1
0 cos θ c


 ·



a
b
vz


 =



h0
s0
hz
sz


 , (D6)

which we will abbreviate as Ax = y. Note that given y this equation will have a unique solution if and only if A is
non-singular, i.e. det (ATA) 6= 0. By direct calculation det (ATA) = (1 + c2)(1− cos2 θ)4 6= 0, thus we will be able to
determine satisfying assignments for a, b, and vz by Gaussian elimination.

For this case we see that exactly two pure ancilla states exist for α = σ � MT whenever |α01| = |α10| and
R(α) ∈ (−1, 1), and no ancilla state (pure or mixed) exists otherwise.

Appendix E: Hardware implementation

We implemented our algorithms for performing nonlinear operations on IBMQ-Bogota. In Fig. 14 we plot the
results of the hardware implementation (dotted) as compared to the ideal output of the algorithm in the absence of
hardware noise (dashed) and the ideal output computed classically (solid). The powers of state algorithm (via QHP)
works reasonably well for squaring a state, i.e. k = 2, but performs more poorly for higher powers. We suggest
that this is because qubit resets are currently rather noisy. We find that on current hardware the post-processing
method for implementing a linear combination of states substantially outperforms the weighted state method. This is
perhaps unsurprising given that a controlled swap operation, requiring 18 CNOTs, is required for the weighted states
algorithm and the CNOT error on IBMQ-Bogota is of the order 10−2. More generally, while the hardware results
broadly reproduce the expected trends, moderate errors are observed. Thus we expect these algorithms to prove more
useful as we approach the fault tolerant era.
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FIG. 14. Hardware Implementation. On the left we plot 〈ψ(p0, φ)k|σz |ψ(p0, φ)k〉 where |ψ(p0, φ)〉 :=
√
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exp(−iφ)
√

1− p20 |1〉 and ψk is computed using QHP on a simulator (dashed line) and on IBMQ-Bogota (dotted line). The
solid line indicates the exact expectation value computed classically. In the centre (right) plot we plot 〈Ψα(p0, φ)|σz |Ψα(p0, φ)〉
where the linear combination of states |Ψα(p0, φ)〉 := α |0〉 + (1 − α) |ψ(p0, φ)〉 is computed using the weighted states method
(post-processing method). In both the hardware and noiseless simulations s = 8000 shots are used.
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