
Parallel Machine Learning for Forecasting the Dynamics of Complex Networks

Keshav Srinivasan,1 Nolan Coble,1, 2 Joy Hamlin,3 Thomas Antonsen,1 Edward Ott,1 and Michelle Girvan1

1University of Maryland, College Park, Maryland 20742
2SUNY Brockport, New York 14420, USA.

3Stony Brook University, New York 11794, USA
(Dated: August 30, 2021)

Forecasting the dynamics of large complex networks from previous time-series data is important
in a wide range of contexts. Here we present a machine learning scheme for this task using a parallel
architecture that mimics the topology of the network of interest. We demonstrate the utility and
scalability of our method implemented using reservoir computing on a chaotic network of oscillators.
Two levels of prior knowledge are considered: (i) the network links are known; and (ii) the network
links are unknown and inferred via a data-driven approach to approximately optimize prediction.

Machine learning (ML) has played a vital role in recent
scientific advances in many disciplines. A key problem in
these contexts is time series prediction of a dynamical
system for which a first-principles, knowledge-based de-
scription is unavailable [1]. By using ML in combination
with measured time-series data, one can hope to con-
struct a faithful model of a system’s dynamics and to
then use this model to predict the future evolution of
the system’s state. Our aim in this paper is to address
this goal for large systems of interacting components with
complex connectivity and dynamics - a system type of
enormous technical and scientific interest in many fields,
ranging, e.g., from neuroscience to power grids. However,
straightforward application of the standard ML predic-
tion schemes becomes problematic when applied to fore-
casting the dynamics of large networks. To deal with such
systems, we propose a parallel forecasting method for
networks with complex dynamics. In our approach, we
construct an ML architecture that mimics the topology
of the network. Each node of the network to be predicted
is assigned an individual small ML device and these indi-
vidual ML devices are linked to each other based on the
underlying connectivity of the network (either known a
priori or inferred from the available time series data).
We demonstrate and test this method by applying it to
a network of Kuramoto oscillators [2, 3] constructed to
exhibit chaotic dynamics. Our method is motivated in
part by previous work on parallel ML prediction of large
spatiotemporally chaotic systems [4, 5].

We consider two scenarios: (a) the connectivity of the
oscillator network is known, and (b) the connectivity of
the oscillator network is unknown a priori, yet may be
approximately inferred from node time series data. Sce-
nario (a) serves two purposes: first, as preparation for
the more challenging situation presented by scenario (b),
and second, as a method applicable to cases where the
connectivity is, in fact, known. The main conclusion of
our paper is that our proposed parallel ML scheme en-
ables data-based network dynamics prediction in cases
that would otherwise (i.e., without parallelization) be
unattainable.

In order to demonstrate and test our approach, we con-

sider the well-studied Kuramoto model of N network-
coupled oscillators,

θ̇i = ωi +K
N∑

j=1

Aij sin(θj − θi), (1)

where θi is the phase angle of oscillator i, ωi is the nat-
ural frequency of oscillator i when uncoupled, K is the
coupling strength, and Aij is the adjacency matrix that
specifies the structure of the oscillator network (Aij = 1,
if there exists a network link from node j to node i with
i 6= j, and Aij = 0, otherwise). Here we consider an
undirected (Aij = Aji), frequency assortative Kuramoto
network [6]. By ‘frequency assortative’ we mean that two
nodes are more likely to be linked if their natural oscilla-
tion frequencies are numerically close. The resulting fre-
quency assortative system has chaotic dynamics for cer-
tain choices of parameters [7], hence serving as a good ex-
ample of complex network dynamics. Each node is taken
to have the same number of connections (this number is
called the node’s degree). The oscillator natural frequen-
cies, ωi, are drawn from a uniform random distribution
from −π/2 to π/2. The frequency assortative network
(i.e., the set of matrix elements Aij) is constructed by
starting with No unlinked nodes, each with its assigned
frequency (ωi for node i) and then successively adding
links, as follows. After randomly choosing a node i that
still requires additional links, we next randomly pick an-
other node j (not already connected to node i) which also
still requires additional links, and then, with probability
pij , we link nodes i and j, where

pij ∝
δγ

δγ + |ωi − ωj |γ
(2)

We continue in this way to make links until all nodes
have the desired degree. Due to the form of pij (Eq. (2))
nodes with similar natural frequencies are connected with
a higher probability (see Supplementary Fig. 1). We use
the global order parameter, R, as a metric to measure

ar
X

iv
:2

10
8.

12
12

9v
1 

 [
cs

.L
G

] 
 2

7 
A

ug
 2

02
1



2

the dynamics of the oscillator network, where

R(t) =

N∑

i=1

N∑

j=1

Aije
iθj (3)

0 0.5 1.0 1.5 2.0 2.5
K

0

0.05

0.1

m
ax

Figure 1. Largest Lyapunov Exponent as a function of the
coupling constant, K. The dashed line represents the chosen
value of K for our studies.

For our frequency assortative network, with N = 50,
a nodal degree of 3, δ = 0.8, γ = 5 and K = 0.5 (our
standard parameter set for most of out subsequent
numerical experiments), we observe chaotic behavior,
which is confirmed by the positive value of λmax, the
largest Lyapunov exponent of the system (Fig. 1).

Background on non-parallel Reservoir Computing pre-
diction. In this paper we use Reservoir Computing (RC)
[8, 9] as our ML scheme, because of its demonstrated
utility for time series prediction [1, 10, 11]. We consider
a reservoir computer constructed with an artificial high
dimensional dynamical system, known as the reservoir,
which is coupled to an input through an input layer,
specified by a matrix Win which maps the input vec-
tor, u, at discrete time t, to the reservoir state variables,
which are collectively expressed as the scalar components
of the reservoir state vector r. In our RC implementa-
tion, the reservoir is a network (not to be confused with
the network, e.g., Eq. (1), whose state we desire to pre-
dict), and the kth component of the vector r is the scalar
state of reservoir node k. The RC network is directed,
sparse, and random with Nr nodes having average input
degree, κ = 3. The RC adjacency matrix is denoted B,
with matrix elements Bkk = 0, and Bkl for k 6= l chosen
randomly and uniformly from [−β, β] where β is chosen
to yield a maximum eigenvalue of B denoted ρ (known
as the spectral radius). Each input to the reservoir is
sent to Nr/Nin reservoir nodes, where Nin is the number
of inputs to the RC (Note: Nr is chosen to be an inte-
ger multiple of Nin). The input matrix, Win, is then a
Nr ×Nin dimensional matrix. The elements of Win are
chosen so that every node in the reservoir receives exactly
one input from u(t) while each input in u(t) is connected
to Nr/Nin nodes in the reservoir network (see Supple-
mentary Material for further discussion). The non-zero
elements are drawn from a uniform random distribution

from [−σ,σ], where σ is the input scaling. The reservoir
state, r(t), is taken to evolve according to

r(t+ ∆t) = αr(t) + (1− α) tanh[Br(t) + Winu(t)], (4)

where the tanh function is applied component-wise to its
vector argument. Here α is the leak rate which controls
the timescale of the reservoir nodes. The output of the
system, ũ, is defined through the output layer and is
given by

ũ(t) = Woutr(t). (5)

For the task of time-series prediction, the reservoir com-
puter is used in two different modes: a training mode
and a prediction mode. In the training mode, the reser-
voir computing system, represented by Eqs. (4) and
(5), is run for the time interval over which training data
u(t) = u(n∆t) (n = −nt, (1− nt), (2− nt), ..., 0) is avail-
able, r(n∆t) is computed, and the output matrix Wout

is adjusted (‘trained’) so that the output of the reser-
voir computer ũ(t) best approximates u(t). This is done
through a ridge regression procedure, wherein we mini-
mize the error summed over the training times t = n∆t
for n running from 1− nt to 0,

min
Wout

{∑[
‖Woutr(t)− u(t)‖2

]
+ β Tr

(
WoutW

T
out

)}

(6)
Here β is the Tikhonov regularization parameter
that is used to prevent over-fitting. The quantities
(Nr, ρ, σ, α and β), referred to as hyperparameters of
the reservoir computing setup, are collectively used to
control the performance of system. In this paper we chose
the hyperparameters by a subsequent iterative process
approximately maximizing the valid prediction time (See
Eq. (8)) over the hyperparamters via a coarse grid search
(See Supplementary Material Section III). In the predic-
tion mode, the reservoir state now evolves autonomously
in “closed-loop” mode; i.e., the output at time t, now
serves as the input at time t+ ∆t,

r(t+ ∆t) = tanh[Br(t) + WinWoutr(t)]. (7)

This procedure generates a predicted time series
û(n∆t) = Woutr(t) that is assumed to approximate the
true future evolution of the state of the system, u(t) at a
time n∆t for n > 0 (we choose ∆t small compared to the
time scale for variation of u so that u(n∆t) essentially
specifies the continuous time function u(t)).

Parallel ML scheme for network prediction. In order
to address the high computational complexity of predict-
ing large networks, we introduce a parallel network RC
architecture (see the schematic in Fig. 2). Each node,
i, in the predicted network is assigned its own reservoir,
Ri. The inputs to this reservoir are the signal of node
i itself, as well as that of the nearest network neighbors



3

of node i. The number of such neighbors is equal to the
network degree. The reservoir Ri is then trained on these
inputs to predict the signal of node i. Because each Ri
predicts just one node, its size Nr can be relatively small.
In addition, since our parallel scheme uses an intercon-
nected network of independently trained reservoirs, we
can efficiently parallelize our training process, making
the system scalable to large networks.

...
...

�

�

�

�� ��������

�����

�����

�����

Figure 2. A schematic diagram for the parallel network ML
architecture. Here we show Reservoir 2 (R2), which receives
input from its assigned node (node 2), plus inputs from nodes
connected to node 2 (i.e., nodes 1 and 3). R2 is then is then
trained to predict its assigned node (node 2). This process
is the same for each node in the network, such that the con-
nectivity among the reservoirs mimics the network to be pre-
dicted.

Results. To compare the parallel, multiple RC scheme
with the single RC approach, we use a No = 50 node
frequency assortative Kuramoto oscillator (δ = 0.8.
γ = 5) network with a coupling constant of K = 0.5.
We study the magnitude of the global order parameter
|R| which tells us about network-level activity (see Fig.
3) and the prediction of the evolution of individual node
states (see Supplementary Figure 3), both of which show
the same main qualitative behavior. For the purpose of
forming inputs to the reservoir, we specify the state of
the oscillator i as [sin θi(t), cos θi(t)]. The input matrix
is generated as described above and in Supplementary
Material, Section 2.

Single non-parallel reservoir prediction. The single
reservoir computer prediction can fail as the size of the
network we want to forecast increases. This is clearly
demonstrated in Fig. 3(a), where the prediction breaks
down in a fraction of a Lyapunov time, λmaxt. We quan-
tify the duration of an accurate prediction by a metric
that we call the “valid prediction time”. This metric is
defined as the amount of time elapsed before the normal-
ized root mean squared prediction error (NRMSE), E(t),
exceeds some chosen value f , 0 < f < 1, for the the first
time, where

E(t) =
‖u(t)− ũ(t)‖
〈‖u(t)‖2〉1/2

. (8)

The valid prediction time for f = 0.1 is marked in Fig. 3
by a vertical dotted lines. Even for the very large reser-

0

0.2

0.4

|R
|

0

0.2

0.4

|R
|

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

|R
|

maxt

(a)

(b)

(c)

Figure 3. Prediction of the order parameter in 3 different
cases of ML implementations. The blue curves are the data
(the truth) and red curves are predictions. The dotted lines
in each plot denote the valid prediction time. (a) Single, non-
parallel RC prediction using a large reservoir (Nr = 10000),
(b) Parallel prediction with known network links, using 50
separate reservoirs each having modest size (Nr = 200), (c)
Parallel prediction with unknown network links, using 50 sep-
arate reservoirs each having modest size (Nr = 200). The
network structure is estimated by using transfer entropy as a
metric to draw network edges.

voir (Nr=10000), close to the limit of our computer re-
sources, that is used in Fig. 3(a), the system is still not
able to predict past a fraction of a Lyapunov time.

Parallel scheme with known links. In cases where the
network structure is known a priori, such as in certain
social networks, and we can construct our parallel
reservoir architecture by using the known network links.
In the case of our Kuramoto oscillator network, we
demonstrate our results on the 50 node network by using
50 separate parallel reservoirs of relatively modest size
(Nr = 200 as compared to Nr = 10000 for Fig. 3(a)),
each having the same set of hyperparameters [see Fig.
3(b)]. The predictive performance of this architecture
could potentially be enhanced by individually optimiz-
ing hyperparameters for each of the 50 reservoirs, but
this would considerably increase both the time and
computational resources required for this task. As seen
from Fig. 3(b), our parallel scheme does exceedingly
well for multiples of the Lyapunov time, λmaxt. This is
particularly clear from a comparison of valid prediction
time (vertical dashed lines) in Fig. 3(a) versus those in
Fig. 3(b), the latter being & 10 times larger, while at the
same time being much less computationally demanding



4

(mainly due to the difference in Nr, Nr = 10000 for
the nonparallel case versus Nr = 200 in the parallel case).

Parallel scheme with unknown links. In many cases
of interest, one may not have information about the un-
derlying network structure. Using nodal time-series data
for finding links in networks, such as metabolic [12] and
gene-regulatory networks [13], is an active area of current
research. Many heuristic-based [14] and statistics-based
tools like conditional mutual information [15], and corre-
lation [16], as well as a machine learning technique [17],
have been used for link inference and might give use-
ful approximations of the underlying network structure.
These methods could then potentially be used in our par-
allel network scheme. As an example, we now demon-
strate the performance of our parallel method combined
with the use of Transfer Entropy [18] for link inference.
Transfer entropy is a statistical method to infer causal re-
lationships between variables by using conditional prob-
abilities: If a signal A has a causal effect on signal B,
then the probability of B conditioned on its past is dif-
ferent from the probability of B conditioned on both its
past and the past of A. Transfer entropy can also be ex-
pressed in terms of the conditional mutual information
as

TX−→Y = I(Yt;Xt−1:t−L|Yt−1:t−L). (9)

Considering the problem of network state prediction, we
use past measured nodal state time-series to calculate
the transfer entropy between each pair of nodes in
the network using Eq. (9) and then pick a threshold.
Pairs of nodes with transfer entropy values above the
threshold are assigned a link between them. As we
decrease this threshold, we draw more links and hence
increase the average number of supposed neighbors
for each node. Initially, decreasing the threshold, or
in other words increasing the number of supposed
neighbors, increases the number of true positive links
and improves the predictive performance of our reservoir
scheme. But if this threshold is decreased too much, the
number of false positives increases drastically degrading
the predictions. Since our goal is prediction, we view
the link-inference threshold on the transfer entropy
as an additional hyperparameter and chose it (along
with the other hyperparameters), so as to optimize the
valid prediction time. By this procedure, we effectively
bootstrap our prediction process to determine the
link threshold criterion. An example set of results
for Nr ≈ 200 (See Supplementary Material Section II
for details) is shown in Fig. 3(c). Again, in marked
contrast with the results in Fig. 3(a) for a large
single RC (Nr = 10000), we obtain good predictions,
e.g., a valid time between 3 and 4 Lyapunov times for |R|.

Dependence on the size of the predicted network. Fig.
4 shows a plot of the valid prediction time as a function

0 100 200 300 400 500
Oscillator network size

0

2

4

6

8

10

12

14

|R
| P

re
di

ct
io

n 
tim

e 
(

 m
ax

t)

Single Reservoir
Parallel Scheme - Known Links
Parallel Scheme - Unknown Links

Figure 4. Performance of the different Reservoir Computing
methods as a function of the Kuramoto oscillator network
size.

of the oscillator network size, No. As we increase the
size of the oscillator network, the prediction using a
single reservoir (Nr = 10000) quickly degrades even
further and becomes unable to capture the network
dynamics at all. Since the parallel method assigns a
reservoir to each oscillator in the network, for the case
with known links, as expected it maintains constant
performance to within the estimated uncertainty of
the valid times. However, when we do not know the
links, the ability of our parallel scheme to predict the
network dynamics is limited by its ability to make
accurate link predictions. The reduction in performance
incurred by missing real links (i.e. false negatives) far
outweighs that associated with false positive links. As
we increase the oscillator network size, the accuracy of
link determination gets worse which ultimately affects
the predictive performance of this method. For small
oscillator network size of No = 10, our true positive
rate is 100%, while our false discovery rate is 37.5%,
but as the network science increases to No = 500, our
true positive rate drops to 96% and our false discovery
rate becomes 69.6%. That the prediction degradation
is more sensitive to a false negative link inference than
to a false positive link inference can be understood as
follows. The false negative inference of a link to node
i deprives reservoir Ri of vital information needed for
prediction of the state of node i. In contrast, reservoir
Ri can compensate for a false positive link from node j
to node i by learning, through its training, to ignore its
time series input from node j. However, if there are too
many false positive links to node i, reservoir Ri becomes
overburdened, and its state prediction accuracy degrades.



5

Conclusion. We are able to construct accurate,
data-driven forecasts for the dynamics of large complex
networks using a parallel ML architecture that reflects
the topology of the network to be predicted. In cases for
which a non-parallel approach with comparable resources
fails, our scheme is successful when the network links
are either known or unknown a priori. The parallel
nature makes our approach scalable for extremely large
networks, creating potential applications to many fields.

This work was supported by the National Science
Foundation under Grant Nos. PHY-1461089, DGE-
1632976, and DMS-1813027.

[1] H. Jaeger and H. Haas, Science 304, 78 (2004).
[2] Y. Kuramoto, in International Symposium on Mathemat-

ical Problems in Theoretical Physics, Lecture Notes in
Physics (Springer, Berlin, Heidelberg, 1975) pp. 420–422.

[3] J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ri-
tort, and R. Spigler, Reviews of Modern Physics 77, 137
(2005).

[4] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Phys-
ical Review Letters 120, 024102 (2018).

[5] T. Arcomano, I. Szunyogh, J. Pathak, A. Wikner, B. R.
Hunt, and E. Ott, Geophysical Research Letters 47,
10.1029/2020GL087776 (2020).

[6] J. G. Restrepo and E. Ott, EPL (Europhysics Letters)
107, 60006 (2014).

[7] P. S. Skardal, J. G. Restrepo, and E. Ott, Physical Re-
view E 91, 060902 (2015).

[8] H. Jaeger, The ‘echo state’ approach to analyzing and
training recurrent neural networks, GMD Report 148
(German National Research Center for Information Tech-
nology, 2001).

[9] W. Maass, T. Natschläger, and H. Markram, Neural
Computation 14, 2531 (2002).

[10] J. Dambre, D. Verstraeten, B. Schrauwen, and S. Massar,
Scientific Reports 2, 514 (2012).

[11] D. Canaday, A. Griffith, and D. J. Gauthier, Chaos: An
Interdisciplinary Journal of Nonlinear Science 28, 123119
(2018).

[12] P. Holme and M. Huss, Journal of the Royal Society In-
terface 2, 327 (2005).

[13] M. Banf and S. Y. Rhee, Scientific Reports 7, 41174
(2017).

[14] L. Lü and T. Zhou, Physica A: Statistical Mechanics and
its Applications 390, 1150 (2011).

[15] F. Tan, Y. Xia, and B. Zhu, PLOS ONE 9, e107056
(2014).

[16] S. Kumar and N. Deo, Physical Review E 86, 026101
(2012).

[17] A. Banerjee, J. Pathak, R. Roy, J. G. Restrepo, and
E. Ott, Chaos: An Interdisciplinary Journal of Nonlinear
Science 29, 121104 (2019).

[18] T. Schreiber, Physical Review Letters 85, 461 (2000).



Supplementary Material

Keshav Srinivasan,1 Nolan Coble,1, 2 Joy Hamlin,3 Tom M. Antonsen,1 Edward Ott,1 and Michelle Girvan1

1University of Maryland, College Park, Maryland 20742, USA.
2SUNY Brockport, New York 14420, USA.

3Stony Brook University, New York 11794, USA

I. FREQUENCY ASSORTATIVE KURAMOTO OSCILLATOR NETWORK

0

Supplementary Figure 1. Frequency assoratative network structure with 50 nodes displaying the natural frequencies of the
individual oscillators, with nodes colored by frequency. Similar frequencies are connected with higher probability.

II. GENERATING THE RESERVOIR INPUT MATRIX, Win

In this section, we provide more details on how we generated the input matrix, Win, that feeds into the reser-
voir for predicting our Kuramoto oscillator network. Here the state of each oscillator, i, is specified as a tuple
[sin θi(t), cos θi(t)]. The Nosc

in input oscillators to a particular reservoir are collapsed into a single input vector, u, with
N tot

in (N tot
in = 2Nosc

in ) elements such that ui(t) = sin θi(t), u(Nosc
in +i)(t) = cos θi(t) for 1 ≤ i ≤ Nosc

in . The elements
of Win are chosen so that each of the Nr nodes in the reservoir receives exactly one input from amongst the 2Nosc

in

components of the vector u(t). In the parallel scheme with known neighbors, all the N tot
in inputs to a reservoir are

treated equally; i.e. each input in u(t) is connected to the same number (Nr/N
tot
in ) of reservoir nodes (Note: Nr is

chosen to be an integer multiple of N tot
in ). The non-zero elements of Win are then randomly drawn from a uniform

distribution in [−σ,σ], where σ is the input scaling.

We compare the performance of an all-to-all input matrix to one that is generated as mentioned above, with the
input scaling, σ, optimized separately for each case (σ = 0.3 for an all-to-all input matrix, for other hyperparameters
see Table I). Supp. Fig. 2 clearly highlights the superior performance of the latter method for a Kuramoto oscillator
network with all nodes having degree 3, where each reservoir in the parallel scheme (with known neighbors) receives
8 inputs from exactly 4 oscillators: 1 ”assigned” + 3 neighbors. The assigned oscillator is the oscillator the reservoir
is trained to predict. As we increase the number of inputs to a reservoir, it might be beneficial for each input to be
connected to a non-exclusive subset of the reservoir. This would mean each input is still connected to a fixed number
of reservoir nodes, but we can relax the criteria that each node in the reservoir is connected to exactly one input.

For parallel prediction with unknown neighbors, we must slightly alter our scheme. In this case, each of the input
oscillators to a reservoir are not treated equally. Of the Nosc

in input oscillators, we only know 1 “true” input oscillator-

ar
X

iv
:2

10
8.

12
12

9v
1 

 [
cs

.L
G

] 
 2

7 
A

ug
 2

02
1



2

the assigned oscillator that reservoir is intended to predict. We cannot distinguish the true neighbors from the false
positives in the remaining Nosc

in − 1 input oscillators. We can account for this by “reserving” a larger part of the
reservoir for the assigned oscillator and dividing the rest of the reservoir equally between all the inferred neighbors.
This means, each of the 2 inputs from the assigned oscillator are connected to Nassign

in /2 reservoir nodes, while the

remaining N tot
in − 2 inputs are each connected to (Nr − Nassign

in )/(N tot
in − 2) reservoir nodes. Here Nr − Nassign

in is
chosen to be an integer multiple of N tot

in − 2 and hence the number of reservoir nodes used in this case can only
be set approximately equal to one with known neighbors. For example, in our system with known neighbors we set
Nr = 200. But for the case with unknown neighbors, where we set Nassign = 50, if we have 7 inferred neighbors for
a particular oscillator, the Nr for the corresponding reservoir must be set to 204 to satisfy the criteria.

0

0.2

0.4

|R
|

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

|R
|

maxt

(a)

(b)

Supplementary Figure 2. Parallel prediction of Kuramoto system with known neighbors. The blue curves are the data and red
curves are predictions. The dotted lines in each plot denote the valid prediction time. (a) Using an all-to-all input matrix, i.e.,
all inputs map to all reservoir nodes. (b) Using an input matrix where each input is sent to a different disjoint set of reservoir
nodes.

III. RC HYPERPARAMETERS

We list the RC hyperparameters (Table I) used to plot the results shown in the paper. These hyperparameters were
chosen by a subsequently iterative coarse grid search which approximately maximized the valid prediction time.

Number of
reservoir nodes

Spectral
radius

Input scaling Leak rate Regularization
parameter

Nr ρ σ α β

Single Reservoir 10000 0.9 0.1 0 10−7

Parallel Scheme

a) Known Neighbors 200 0.9 0.6 0.1 10−9

b) Unknown Neighbors ≈ 200* 0.9 0.5 0.1 10−8

TABLE I. Values of reservoir hyperparameters obtained via a coarse grid search for a single reservoir prediction as well as for
the parallel reservoir scheme. *Reservoir size set approximately to 200, for details see Section II.



3

IV. NODE-LEVEL PREDICTIONS

While we study the predictive performance of our ML scheme, it is also important to note the node-level details.
Supp. Fig. 3(a), shows that a single large reservoir (Nr = 10000) is unable to capture the dynamics of individual
oscillators in the network. However, our parallel schemes with known edges [Supp. Fig. 3(b)], as well as unknown
edges [Supp. Fig. 3(c)], are able to capture the dynamics of the individual oscillators. The parallel schemes, also give
good predictions of the system “climate” (i.e. the prediction still seems to resemble the original dynamics) even after
the marked valid prediction time (vertical dotted lines in Supp. Fig. 3).

a)

b)

c)

Supplementary Figure 3. Prediction of the dynamics of three representative individual oscillators. The natural frequency of
the oscillators is noted above. The blue curves are the data and red curves are predictions. The vertical dotted lines in each
plot denote the valid prediction time. (a) Single, non-parallel RC prediction using a large reservoir (Nr = 10000), (b) Parallel
prediction (with known network links) using 50 separate reservoirs each having modest size (Nr = 200), (c) Parallel prediction
(with unknown network links) using 50 separate reservoirs each having modest size (Nr ≈ 200). For row (c) the network
structure is estimated by using transfer entropy as a metric for inferring network edges.


